forked from argonne-lcf/ai-science-training-series
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pytorch_mnist.py
198 lines (166 loc) · 7.5 KB
/
pytorch_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from __future__ import print_function
import argparse
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import torch.utils.data.distributed
# Horovod: import horovod
import horovod.torch as hvd
import time
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch_size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=64, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--seed', type=int, default=42, metavar='S',
help='random seed (default: 42)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--fp16-allreduce', action='store_true', default=False,
help='use fp16 compression during allreduce')
parser.add_argument('--device', default='gpu',
help='Wheter this is running on cpu or gpu')
parser.add_argument('--num_threads', default=0, help='set number of threads per worker', type=int)
args = parser.parse_args()
args.cuda = args.device.find("gpu")!=-1
# Horovod: initialize library.
hvd.init()
torch.manual_seed(args.seed)
print("Horovod: I am worker %s of %s." %(hvd.rank(), hvd.size()))
if args.device.find("gpu")!=-1:
# Horovod: pin GPU to local rank.
torch.cuda.set_device(hvd.local_rank())
torch.cuda.manual_seed(args.seed)
if (args.num_threads!=0):
torch.set_num_threads(args.num_threads)
if hvd.rank()==0:
print("Torch Thread setup: ")
print(" Number of threads: ", torch.get_num_threads())
# print(" Number of inter_op threads: ", torch.get_num_interop_threads())
kwargs = {'num_workers': 1, 'pin_memory': True} if args.device.find("gpu")!=-1 else {}
train_dataset = \
datasets.MNIST('datasets/', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
# Horovod: use DistributedSampler to partition the training data.
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
test_dataset = \
datasets.MNIST('datasets', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
# Horovod: use DistributedSampler to partition the test data.
test_sampler = torch.utils.data.distributed.DistributedSampler(
test_dataset, num_replicas=hvd.size(), rank=hvd.rank())
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.test_batch_size,
sampler=test_sampler, **kwargs)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
model = Net()
if args.device.find("gpu")!=-1:
# Move model to GPU.
model.cuda()
# Horovod: scale learning rate by the number of GPUs.
optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(),
momentum=args.momentum)
# Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(optimizer,
named_parameters=model.named_parameters(),
compression=compression)
def train(epoch):
model.train()
running_loss = 0.0
training_acc = 0.0
# Horovod: set epoch to sampler for shuffling.
train_sampler.set_epoch(epoch)
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
pred = output.data.max(1, keepdim=True)[1]
training_acc += pred.eq(target.data.view_as(pred)).cpu().float().sum()
running_loss += loss.item()
if batch_idx % args.log_interval == 0:
# Horovod: use train_sampler to determine the number of examples in
# this worker's partition.
print('[{}] Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(hvd.rank(),
epoch, batch_idx * len(data), len(train_sampler), 100. * batch_idx / len(train_loader), loss.item()/args.batch_size))
running_loss = running_loss / len(train_sampler)
training_acc = training_acc / len(train_sampler)
loss_avg = metric_average(running_loss, 'running_loss')
training_acc = metric_average(training_acc, 'training_acc')
if hvd.rank()==0: print("Training set: Average loss: {:.4f}, Accuracy: {:.2f}%".format(loss_avg, training_acc*100))
def metric_average(val, name):
tensor = torch.tensor(val)
avg_tensor = hvd.allreduce(tensor, name=name)
return avg_tensor.item()
def test():
model.eval()
test_loss = 0.
test_accuracy = 0.
n = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
# sum up batch loss
#test_loss += F.nll_loss(output, target, size_average=False).item()
test_loss += F.nll_loss(output, target).item()
# get the index of the max log-probability
pred = output.data.max(1, keepdim=True)[1]
test_accuracy += pred.eq(target.data.view_as(pred)).cpu().float().sum()
n=n+1
# Horovod: use test_sampler to determine the number of examples in
# this worker's partition.
test_loss /= len(test_sampler)
test_accuracy /= len(test_sampler)
# Horovod: average metric values across workers.
test_loss = metric_average(test_loss, 'avg_loss')
test_accuracy = metric_average(test_accuracy, 'avg_accuracy')
# Horovod: print output only on first rank.
if hvd.rank() == 0:
print('Test set: Average loss: {:.4f}, Accuracy: {:.2f}%\n'.format(
test_loss, 100. * test_accuracy))
t0 = time.time()
for epoch in range(1, args.epochs + 1):
train(epoch)
test()
t1 = time.time()
if hvd.rank()==0:
print("Total training time: %s seconds" %(t1 - t0))