forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cartesian_product.hh
113 lines (103 loc) · 3.49 KB
/
cartesian_product.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/*
* Copyright (C) 2015 ScyllaDB
*
*/
/*
* This file is part of Scylla.
*
* Scylla is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Scylla is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Scylla. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vector>
#include <sys/types.h>
// Single-pass range over cartesian product of vectors.
// Note:
// {a, b, c} x {1, 2} = {{a, 1}, {a, 2}, {b, 1}, {b, 2}, {c, 1}, {c, 2}}
template<typename T>
struct cartesian_product {
const std::vector<std::vector<T>>& _vec_of_vecs;
public:
class iterator : public std::iterator<std::forward_iterator_tag, std::vector<T>> {
public:
using value_type = std::vector<T>;
private:
size_t _pos;
const std::vector<std::vector<T>>* _vec_of_vecs;
value_type _current;
std::vector<typename std::vector<T>::const_iterator> _iterators;
public:
struct end_tag {};
iterator(end_tag) : _pos(-1) {}
iterator(const std::vector<std::vector<T>>& vec_of_vecs) : _pos(0), _vec_of_vecs(&vec_of_vecs) {
_iterators.reserve(vec_of_vecs.size());
for (auto&& vec : vec_of_vecs) {
_iterators.push_back(vec.begin());
if (vec.empty()) {
_pos = -1;
break;
}
}
}
value_type& operator*() {
_current.clear();
_current.reserve(_vec_of_vecs->size());
for (auto& i : _iterators) {
_current.emplace_back(*i);
}
return _current;
}
void operator++() {
++_pos;
for (ssize_t i = _iterators.size() - 1; i >= 0; --i) {
++_iterators[i];
if (_iterators[i] != (*_vec_of_vecs)[i].end()) {
return;
}
_iterators[i] = (*_vec_of_vecs)[i].begin();
}
// If we're here it means we've covered every combination
_pos = -1;
}
bool operator==(const iterator& o) const { return _pos == o._pos; }
bool operator!=(const iterator& o) const { return _pos != o._pos; }
};
public:
cartesian_product(const std::vector<std::vector<T>>& vec_of_vecs) : _vec_of_vecs(vec_of_vecs) {}
iterator begin() { return iterator(_vec_of_vecs); }
iterator end() { return iterator(typename iterator::end_tag()); }
};
template<typename T>
static inline
size_t cartesian_product_size(const std::vector<std::vector<T>>& vec_of_vecs) {
size_t r = 1;
for (auto&& vec : vec_of_vecs) {
r *= vec.size();
}
return r;
}
template<typename T>
static inline
bool cartesian_product_is_empty(const std::vector<std::vector<T>>& vec_of_vecs) {
for (auto&& vec : vec_of_vecs) {
if (vec.empty()) {
return true;
}
}
return vec_of_vecs.empty();
}
template<typename T>
static inline
cartesian_product<T> make_cartesian_product(const std::vector<std::vector<T>>& vec_of_vecs) {
return cartesian_product<T>(vec_of_vecs);
}