forked from ProAlgos/ProAlgos-Cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
longest_common_subsequence.hpp
71 lines (58 loc) · 2.08 KB
/
longest_common_subsequence.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/*
Longest Common Subsequence Algorithm
------------------------------------
Given two strings, find their longest common subsequence. Note
that this differs from the longest common subsequence algorithm:
unlike substrings, subsequences are not required to occupy
consecutive positions within the original sequences. This is a
classic dynamic programming algorithm for string processing.
Time complexity
----------------
O(M*N), where M and N are the lengths of the two strings.
Space complexity
----------------
O(M*N), where M and N are the lengths of the two strings.
*/
#ifndef LONGEST_COMMON_SUBSEQUENCE_HPP
#define LONGEST_COMMON_SUBSEQUENCE_HPP
#include <algorithm>
#include <string>
#include <vector>
using std::vector;
using std::string;
using std::max;
vector<vector<int>> calc_lcs(const string& s1, const string& s2) {
// M+1 by N+1 lengths matrix
vector<vector<int>> lengths(s1.length()+1, vector<int>(s2.length()+1, 0));
for (size_t i = 1; i < s1.length() + 1; i++) {
for (size_t j = 1; j < s2.length() + 1; j++) {
// When the characters match, add 1
if (s1[i - 1] == s2[j - 1]) {
lengths[i][j] = lengths[i - 1][j - 1] + 1;
}
// Pick the maximum neighbor
else {
lengths[i][j] = max(lengths[i - 1][j], lengths[i][j - 1]);
}
}
}
return lengths;
}
string get_lcs(const string& s1, const string& s2) {
vector<vector<int>> lengths = calc_lcs(s1, s2);
size_t i = lengths.size() - 1;
size_t j = lengths[0].size() - 1;
string lcs;
while (i != 0 and j != 0) {
if (s1[i - 1] == s2[j - 1]) { // if there's a match
lcs += s1[i - 1]; // save the character
i--, j--;
} else if (lengths[i - 1][j] > lengths[i][j - 1]) {
i--; // move to the left
} else {
j--; // move to the right
}
}
return string(lcs.rbegin(), lcs.rend()); // return the reversed string
}
#endif // LONGEST_COMMON_SUBSEQUENCE_HPP