-
Notifications
You must be signed in to change notification settings - Fork 1
/
testMatrices.txt
99 lines (86 loc) · 3.17 KB
/
testMatrices.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
The matrix multiplication problem below can be used to test the matrix browser.
select the meet of the matrix while in this file in an editor.
Now, press alt+shift+m. It should say initialised 2 by 3 matrix.
Select the next matrix, after the multiplication sign.
Do the nvda+alt+m thing again.
You should hear selected 3 by 2 matrix.
Now, go below this matrix and start using the matrix browser to multiply the two matrices. You can directly type into the document as the browser doesn't interfeer with typing keys.
Keystrokes:
nvda+alt+m: initialised highlited matrix.
NVDA+alt+b: open matrix browser.
While in the browser, you can:
arrow through the current matrix.
press tab to view the next matrix.
press shift+tab to view the previous matrix.
press delete to delete a matrix.
Press escape to leave the browser.
$begin{Bmatrix}
1&2&3\\
4 & 6 & 8
\end{Bmatrix} \cdot \begin{Bmatrix}
8 & 5 \\
7 & 3 \\
1 & 8
\end{Bmatrix}$
Matrix test 2.
Find the inverse of
\begin{Bmatrix}
1 & 3 & 5 & 7\\
3 & 4 & 8 & 9 \\
8 & 5 & 8 & 3 \\
1 & 9 & 11 & 3
\end{Bmatrix}
matrix test 3: from a homework assignment.
\textbf{Exercise 0.0.6:}
In class we saw that if $E_{i\longleftrightarrow j}$ denotes the matrix
which has entry $1$ at position $(k,k)$ for $k\neq i$
, $j$; entry $1$ at positions $(j,i)$ and $(i, j)$ and $0$ everywhere else (So it is the identity matrix,
with rows $i$ and $j$ swapped), then multiplication on the left by $%
E_{i\longleftrightarrow j}$ corresponds to the row operation of
interchanging rows $i$ with $j$:
$E_{i\longleftrightarrow j}\left(
\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i1} & a_{i2} & \cdots & a_{in} \\
\vdots & \vdots & \ddots & \vdots \\
a_{j1} & a_{j2} & \cdots & a_{jn} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}%
\end{array}%
\right) =\left(
\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{j1} & a_{j2} & \cdots & a_{jn} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i1} & a_{i2} & \cdots & a_{in} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}%
\end{array}%
\right) $
\vspace{1pt}
Let $E_{ia}$ be the matrix that has $1$s on the diagonal, except at position
$\left(i, i\right) $ where it has an $a$; and $0$ everywhere else:
$E_{ia}=\left(
\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & a & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1%
\end{array}%
\right) $
Prove that multiplying an $n\times m$ matrix $A$ on the left by $E_{ia}$ has
the effect of multiplying the $i$-th of $A$ by $a$. So $E_{ia}$ corresponds
to the row operation of scaling.
\vspace{1pt}
Finally, let $E_{i+j}$ be the matrix that has $1$s at the diagonal, one more
$1$ at position $(j, i)$, and all other entries $0$.
Prove that multiplyng $A$ on the left by $E_{i+j}$ corresponds to adding the
$i$-th row of $A$ to the $j$-th row of $A$.
\vspace{1pt}
The upshot of the exercise is that Gaussian elimination can be expressed as
multipling a matrix by an appropriate sequence of the elementary matrices $%
E_{i\longleftrightarrow j}$, $E_{ia}$, $E_{i+j}$.