-
Notifications
You must be signed in to change notification settings - Fork 109
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Saving and reloading boosters using IOBuffer #202
Comments
Can you provide an MWE or, at the very least, an explicit error dump? I don't know what to make of this description. There are no model finalization steps, so as far as I know you should be able to call |
Here's my MWE. All attempts except 2, 3 and 4 throw error. My attempts 2, 3, 4 however give wrong result. Next comment will be my output. d_train = DMatrix(x_train, label=y_train);
d_test = DMatrix(x_test, label=y_test);
bst = Booster(d_train; max_depth = 20, XGBoost.regression(eval_metric = "mape")..., XGBoost.randomforest()...);
best_loss = typemax(Float32);
best_i = 0;
buffer_save = IOBuffer(read=true, write=true);
buffer_serial = IOBuffer(read=true, write=true);
for i in 1:10
update!(bst, d_train, watchlist = watch);
pred = XGBoost.predict(bst, x_test);
curr_loss = error(pred, y_test);
println(curr_loss);
if curr_loss < best_loss
best_i = i;
best_loss = curr_loss
XGBoost.save(bst, buffer_save);
buffer_serial = IOBuffer(XGBoost.serialize(bst));
println(best_i);
end
end
assert_it_works = final -> (begin; pred = XGBoost.predict(final, x_test); curr_loss = error(pred, y_test); return (curr_loss, "Works: " * string(curr_loss == best_loss)); end);
final_bst = Booster(DMatrix[]);
try
seekstart(buffer_save);
final_bst = XGBoost.load(typeof(XGBoost.Booster));
println(assert_it_works(final_bst));
catch e;
write(stdout, string(e));
println("\nAttempt 1 Failed\n")
end
try
seekstart(buffer_save);
final_bst = XGBoost.Booster(DMatrix[], model_buffer = buffer_save);
println(assert_it_works(final_bst));
catch e;
write(stdout, string(e));
println("\nAttempt 2 Failed\n")
end
try
seekstart(buffer_save);
XGBoost.load!(final_bst, buffer_save);
println(assert_it_works(final_bst));
catch e;
write(stdout, string(e));
println("\nAttempt 3 Failed\n")
end
try
seekstart(buffer_save);
XGBoost.load!(final_bst, take!(buffer_save));
println(assert_it_works(final_bst));
catch e;
write(stdout, string(e));
println("\nAttempt 4 Failed\n")
end
try
seekstart(buffer_save);
XGBoost.load!(final_bst, buffer_save);
println(assert_it_works(final_bst));
catch e;
write(stdout, string(e));
println("\nAttempt 5 Failed\n")
end
try
seekstart(buffer_serial);
final_bst = XGBoost.deserialize!(final_bst, buffer_serial);
println(assert_it_works(final_bst));
catch e;
write(stdout, string(e));
println("\nAttempt 6 Failed\n")
end
try
seekstart(buffer_serial);
final_bst = XGBoost.deserialize!(final_bst, take!(buffer_serial));
println(assert_it_works(final_bst));
catch e;
write(stdout, string(e));
println("\nAttempt 7 Failed\n")
end
try
seekstart(buffer_serial);
final_bst = XGBoost.deserialize!(final_bst, read(buffer_serial));
println(assert_it_works(final_bst));
catch e;
write(stdout, string(e));
println("\nAttempt 8 Failed\n")
end
try
final_bst = XGBoost.deserialize(buffer_serial);
println(assert_it_works(final_bst));
catch e;
write(stdout, string(e));
println("\nAttempt 9 Failed\n")
end
try
final_bst = XGBoost.deserialize(Type{XGBoost.Booster}, take!(buffer_serial));
println(assert_it_works(final_bst));
catch e;
#write(stdout, string(e));
println("\nAttempt 10 Failed\n")
end
try
final_bst = XGBoost.deserialize(typeof(final_bst), take!(buffer_serial));
println(assert_it_works(final_bst));
catch e;
write(stdout, string(e));
println("\nAttempt 11 Failed\n")
end |
[ Info: [1] train-mape:1.51966291478350146 valid-mape:1.54929523610775366
1.5492952
1
[ Info: [2] train-mape:0.40160081844888185 valid-mape:0.46602336089583418
0.46602336
2
[ Info: [3] train-mape:0.17652566519803181 valid-mape:0.26984500867009859
0.269845
3
[ Info: [4] train-mape:0.12303823920340601 valid-mape:0.23781751415377347
0.23781751
4
[ Info: [5] train-mape:0.10996602844796843 valid-mape:0.23461653884055558
0.23461653
5
[ Info: [6] train-mape:0.10870173813734055 valid-mape:0.23464444234406565
0.23464446
[ Info: [7] train-mape:0.10713973679701468 valid-mape:0.23546314605696411
0.23546316
[ Info: [8] train-mape:0.10624772975655812 valid-mape:0.23561708124796898
0.23561707
[ Info: [9] train-mape:0.10658877726512184 valid-mape:0.23602501327988257
0.236025
[ Info: [10] train-mape:0.10552233684595115 valid-mape:0.23619752531929100
0.23619755
MethodError(XGBoost.load, (DataType,), 0x0000000000007be8)
Attempt 1 Failed
(1.5492952f0, "Works: false")
(1.5492952f0, "Works: false")
(1.5492952f0, "Works: false")
XGBoost.Lib.XGBoostError(XGBoost.Lib.XGBoosterLoadModelFromBuffer, "[10:17:59] /workspace/srcdir/xgboost/src/learner.cc:1003: Check failed: fi->Read(&mparam_, sizeof(mparam_)) == sizeof(mparam_) (0 vs. 136) : BoostLearner: wrong model format\nStack trace:\n [bt] (0) /home/zarpapis/.julia/artifacts/271facf086d4d0b748a1835be4e1208876f382f9/lib/libxgboost.so(+0x47fd34) [0x7fac29e07d34]\n [bt] (1) /home/zarpapis/.julia/artifacts/271facf086d4d0b748a1835be4e1208876f382f9/lib/libxgboost.so(xgboost::LearnerIO::LoadModel(dmlc::Stream*)+0x2b1) [0x7fac29e2a5a1]\n [bt] (2) /home/zarpapis/.julia/artifacts/271facf086d4d0b748a1835be4e1208876f382f9/lib/libxgboost.so(XGBoosterLoadModelFromBuffer+0x40) [0x7fac29b0e150]\n [bt] (3) [0x7fac8f8c8fc7]\n [bt] (4) [0x7fac8f8c9037]\n [bt] (5) /home/zarpapis/julia-1.10.0/bin/../lib/julia/libjulia-internal.so.1.10(ijl_apply_generic+0x2ae) [0x7faca59f799e]\n [bt] (6) [0x7fac8f86388e]\n [bt] (7) [0x7fac8f892e77]\n [bt] (8) [0x7fac8f897703]\n\n")
Attempt 5 Failed
MethodError(XGBoost.deserialize!, (Booster(), IOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=10387011, maxsize=Inf, ptr=1, mark=-1)), 0x0000000000007be8)
Attempt 6 Failed
XGBoost.Lib.XGBoostError(XGBoost.Lib.XGBoosterUnserializeFromBuffer, "[10:17:59] /workspace/srcdir/xgboost/src/learner.cc:1182: Check failed: header == serialisation_header_: If you are loading a serialized model (like pickle in Python, RDS in R) or\nconfiguration generated by an older version of XGBoost, please export the model by calling\n`Booster.save_model` from that version first, then load it back in current version. See:\n\n https://xgboost.readthedocs.io/en/stable/tutorials/saving_model.html\n\nfor more details about differences between saving model and serializing.\n\nStack trace:\n [bt] (0) /home/zarpapis/.julia/artifacts/271facf086d4d0b748a1835be4e1208876f382f9/lib/libxgboost.so(+0x47fd34) [0x7fac29e07d34]\n [bt] (1) /home/zarpapis/.julia/artifacts/271facf086d4d0b748a1835be4e1208876f382f9/lib/libxgboost.so(xgboost::LearnerIO::Load(dmlc::Stream*)+0x287) [0x7fac29e2d177]\n [bt] (2) /home/zarpapis/.julia/artifacts/271facf086d4d0b748a1835be4e1208876f382f9/lib/libxgboost.so(XGBoosterUnserializeFromBuffer+0x48) [0x7fac29b0dbf8]\n [bt] (3) [0x7fac8f8cb587]\n [bt] (4) [0x7fac8f8cb5f7]\n [bt] (5) /home/zarpapis/julia-1.10.0/bin/../lib/julia/libjulia-internal.so.1.10(ijl_apply_generic+0x2ae) [0x7faca59f799e]\n [bt] (6) [0x7fac8f86388e]\n [bt] (7) [0x7fac8f893852]\n [bt] (8) [0x7fac8f897703]\n\n")
Attempt 7 Failed
XGBoost.Lib.XGBoostError(XGBoost.Lib.XGBoosterUnserializeFromBuffer, "[10:17:59] /workspace/srcdir/xgboost/src/learner.cc:1182: Check failed: header == serialisation_header_: If you are loading a serialized model (like pickle in Python, RDS in R) or\nconfiguration generated by an older version of XGBoost, please export the model by calling\n`Booster.save_model` from that version first, then load it back in current version. See:\n\n https://xgboost.readthedocs.io/en/stable/tutorials/saving_model.html\n\nfor more details about differences between saving model and serializing.\n\nStack trace:\n [bt] (0) /home/zarpapis/.julia/artifacts/271facf086d4d0b748a1835be4e1208876f382f9/lib/libxgboost.so(+0x47fd34) [0x7fac29e07d34]\n [bt] (1) /home/zarpapis/.julia/artifacts/271facf086d4d0b748a1835be4e1208876f382f9/lib/libxgboost.so(xgboost::LearnerIO::Load(dmlc::Stream*)+0x287) [0x7fac29e2d177]\n [bt] (2) /home/zarpapis/.julia/artifacts/271facf086d4d0b748a1835be4e1208876f382f9/lib/libxgboost.so(XGBoosterUnserializeFromBuffer+0x48) [0x7fac29b0dbf8]\n [bt] (3) [0x7fac8f8cb587]\n [bt] (4) [0x7fac8f8cb5f7]\n [bt] (5) /home/zarpapis/julia-1.10.0/bin/../lib/julia/libjulia-internal.so.1.10(ijl_apply_generic+0x2ae) [0x7faca59f799e]\n [bt] (6) [0x7fac8f86388e]\n [bt] (7) [0x7fac8f893ff2]\n [bt] (8) [0x7fac8f897703]\n\n")
Attempt 8 Failed
MethodError(XGBoost.deserialize, (IOBuffer(data=UInt8[...], readable=true, writable=false, seekable=true, append=false, size=10387011, maxsize=Inf, ptr=10387012, mark=-1),), 0x0000000000007be8)
Attempt 9 Failed
Attempt 10 Failed
MethodError(Booster, (), 0x0000000000007be8)
Attempt 11 Failed |
So, when you call I have opened this issue in In the meantime, I suggest you simply use |
After looking into it some more, I've realized a few things.
# Make a new IOBuffer or ...
# ... empty the buffer if reusing it in a loop
b = IOBuffer(read = true, write = true);
# Write to buffer
write(b, XGBoost.serialize(bst));
# - - - - - Do other things - - - - - #
# Create a new Booster
final_bst = Booster(DMatrix[]);
# Go to position 0 of buffer and deserialize
seekstart(b);
deserialize!(final_bst, read(b)); # Or take!(b) The
|
Hello everyone. I'm trying to write my own
keep_best_model_instance
function, by saving my Booster when the validation loss decreases. I understand there is a specific function to predict on the best instance, but I need the model instance itself.All my tries with
save
andload
,serialize
anddeserialize
with an IOBuffer have been unsuccessful and I could not find any documentation or examples on the topic.If anyone has done this before, would you kindly guide how to achieve this? Also, maybe include this on the documentation?
Thank you for your time.
The text was updated successfully, but these errors were encountered: