Skip to content

Latest commit

 

History

History
294 lines (266 loc) · 20.1 KB

function_mapping_py.md

File metadata and controls

294 lines (266 loc) · 20.1 KB

Python 到 DolphinDB 的函数映射

本篇介绍 Python 部分模块到 DolphinDB 函数库的不完全映射。

下文涉及的 python 模块如下:

1. python built-in function

Python 函数 DolphinDB 函数
all all
any any
in in
== eq
equals eqObj
abs abs
len strlen / size
pow pow
print print
set set
dict dict
str string
int int
bool bool
round round
slice slice
type type / typestr
zip loop(pair, x, y)
join concat
format strReplace
sort isort
rjust /zfill lpad /rpad
lead / lag move
itertools.product cross + join

2. numpy

numpy 函数 DolphinDB 函数
numpy.median med
numpy.var(ddof=1) var
numpy.var varp
numpy.cov covarMatrix
numpy.cov(fweights) wcovar
numpy.std(ddof=1) std
numpy.std stdp
numpy.percentile / pandas.Series.percentile percentile
numpy.quantile / pandas.Series.quantile quantile
numpy.quantile quantileSeries
numpy.corrcoef corrMatrix
numpy.random.beta randBeta
numpy.random.binomial randBinomial
numpy.random.chisquare randChiSquare
numpy.random.exponential randExp
numpy.random.f randF
numpy.random.gamma randGamma
numpy.random.logistic randLogistic
numpy.random.normal randNormal
numpy.random.multivariate_normal randMultivariateNormal
numpy.random.poisson randPoisson
numpy.random.standard_t randStudent
numpy.random.rand rand
numpy.argsort isort/isort!
numpy.averge(weight) wavg
numpy.random.uniform randUniform
numpy.random.weibull randWeibull
numpy.max max
numpy.min min
numpy.mean mean/avg
numpy.sum sum
nump.random.normal norm
nump.clip winsorize

3. pandas

pandas 函数 DolphinDB 函数
df[column] at
pandas.Series.loc / pandas.DataFrame.loc loc
pandas.Series.iat / pandas.DataFrame.iat cell
pandas.Series.iloc / pandas.DataFrame.iloc cells
pandas.Series.align / pandas.DataFrame.align align
pandas.unique / pandas.DataFrame.unique / pandas.Series.unique distinct
pandas.concat concatMatrix
pandas.DataFrame.add / pandas.Series.add withNullFill + add
pandas.DataFrame.sub / pandas.Series.sub withNullFill + sub
pandas.DataFrame.mul / pandas.Series.mul withNullFill + mul
pandas.DataFrame.div / pandas.Series.div withNullFill + div / ratio
pandas.DataFrame.pivot pivot / panel
pandas.DataFrame.melt unpivot
pandas.DataFrame.merge / pandas.DataFrame.join merge
pandas.DataFrame.ewm.var ewmVar
pandas.Series.cov covar
pandas.DataFrame.ewm.cov ewmCov
pandas.ewmstd ewmStd
pandas.DataFrame.corr / pandas.Series.corr corr
pandas.DataFrame.std / pandas.Series.std std
pandas.DataFrame.median / pandas.Series.median med
pandas.DataFrame.ewm.corr ewmCorr
pandas.DataFrame.max / pandas.Series.max max
pandas.DataFrame.min / pandas.Series.min min
pandas.DataFrame.mean / pandas.Series.mean mean/avg
pandas.DataFrame.ewm.mean ewmMean
pandas.DataFrame.sum / pandas.Series.sum sum
pandas.DataFrame.prod / pandas.Series.prod prod
pandas.DataFrame.nunique / pandas.Series.nunique nunique
pandas.DataFrame.hist / pandas.Series.hist plotHist
pandas.DataFrame.sem / pandas.Series.sem sem
pandas.DataFrame.mad / pandas.Series.mad mad (useMedian=false)
pandas.DataFrame.kurt(kurtosis) / pandas.Series.kurt(kurtosis) kurtosis
pandas.DataFrame.skew / pandas.Series.kurt(skew) skew
pandas.DataFrame.count / pandas.Series.count count
pandas.DataFrame.idxmax / pandas.Series.idxmax imax
pandas.DataFrame.idxmin / pandas.Series.idxmin imin
pandas.DataFrame.cummax / pandas.Series.cummax cummax
pandas.DataFrame.cummin / pandas.Series.cummin cummin
pandas.DataFrame.cumsum / pandas.Series.cumsum cumsum
pandas.DataFrame.cumprod / pandas.Series.cumprod cumprod
pandas.DataFrame.nlargest(nsmallest) / pandas.Series.nlargest(nsmallest) top + order by / aggrTopN
pandas.DataFrame.diff / pandas.Series.diff eachPost, deltas
pandas.DataFrame.quantile / pandas.Series.quantile quantile
pandas.DataFrame.transpose transpose
pandas.Series.resample / pandas.DataFrame.resample resample
pandas.Series.copy / pandas.DataFrame.copy copy
pandas.Series.describe / pandas.DataFrame.describe 类似 stat
pandas.DataFrame.isnull/pandas.DataFrame.isna isNull
pandas.DataFrame.notnull/pandas.DataFrame.notna isValid
pandas.Series.between between
pandas.Series.is_monotonic_decreasing isMonotonicIncreasing
pandas.Series.is_monotonic_increasing isMonotonicDecreasing
pandas.DataFrame.mask / pandas.Series.mask mask
pandas.DataFrame.bfill / pandas.Series.bfill bfill/bfill!
pandas.DataFrame.ffill / pandas.Series.ffill ffill/ffill!
pandas.DataFrame.interpolate / pandas.Series.interpolate interpolate
pandas.DataFrame.interpolate(method='linear') / pandas.Series.interpolate(method='linear') lfill/lfill!
pandas.DataFrame.fillna / pandas.Series.fillna nullFill/nullFill!
pandas.DataFrame.sort_values / pandas.Series.sort_values sort/sort!
pandas.DataFrame.head / pandas.Series.head head
pandas.DataFrame.tail / pandas.Series.tail tail
pandas.DataFrame.drop / pandas.Series.drop dropColumns!
pandas.DataFrame.dropna / pandas.Series.dropna dropna
pandas.DataFrame.rename rename!
pandas.DataFrame.append / pandas.Series.append append!
pandas.DataFrame.keys / pandas.Series.keys rowNames / columnNames
pandas.DataFrame.astype / pandas.Series.astype cast
pandas.DataFrame.isin / pandas.Series.isin in
pandas.Series.str.isspace isSpace
pandas.Series.str.isalnum isAlNum
pandas.Series.str.isalpha isAlpha
pandas.Series.str.isnumeric isNumeric
pandas.Series.str.isdecimal isDecimal
pandas.Series.str.isdigit isDigit
pandas.Series.str.islower isLower
pandas.Series.str.isupper isUpper
pandas.Series.str.istitle isTitle
pandas.Series.str.startswith startsWith
pandas.Series.str.endswith endsWith
pandas.Series.str.find regexFind
pandas.Series.str.replace strReplace
pandas.Series.duplicated /pandas.DataFrame.duplicated isDuplicated
pandas.Series.rank / pandas.DataFrame.rank rank
pandas.Series.rank(method='dense') / pandas.DataFrame.rank(method='dense') denseRank
pandas.read_csv loadText / loadTextEx
pandas.to_csv saveText
pandas.read_json fromJson
pandas.DataFrame.to_json / pandas.Series.to_json toJson
pandas.DataFrame.groupby.aggFunc regroup, group by
pandas.to_datetime temporalParse
pandas.DataFrame.rolling / pandas.Series.rolling moving
pandas.rolling_mean mavg
pandas.rolling_std mstd
pandas.rolling_median mmed
pandas.DataFrame.shift / pandas.Series.shift move / tmove / prev / next

4. scipy

scipy 函数 DolphinDB 函数
scipy.stats.percentileofscore percentileRank
scipy.stats.spearmanr(X, Y)[0] spearmanr(X, Y)
scipy.spatial.distance.euclidean euclidean
scipy.stats.beta.cdf(X, a, b) cdfBeta(a, b, X)
scipy.stats.binom.cdf(X, trials, p) cdfBinomial(trials, p, X)
scipy.stats.chi2.cdf(x, df) cdfChiSquare(df, X)
scipy.stats.expon.cdf(x, scale=mean) cdfExp(mean, X)
scipy.stats.f.cdf(X, dfn, dfd) cdfF(dfn, dfd, X)
scipy.stats.gamma.cdf(X, shape, scale=scale) cdfGamma(shape, scale, X)
scipy.stats.logistic.cdf(X, loc=mean,scale=scale) cdfLogistic(mean, scale, X)
scipy.stats.norm.cdf(X, loc=mean, scale=stdev) cdfNormal(mean,stdev,X)
scipy.stats.poisson.cdf(X, mu=mean) cdfPoisson(mean, X)
scipy.stats.t.cdf(X, df) cdfStudent(df, X)
scipy.stats.uniform.cdf(X, loc=lower, scale=upper-lower) cdfUniform(lower, upper, X)
scipy.stats.weibull_min.cdf(X, alpha, scale=beta) cdfWeibull(alpha, beta, X)
scipy.stats.zipfian.cdf(X, exponent, num) cdfZipf(num, exponent, X)
scipy.stats.beta.ppf(X, a, b) invBeta
scipy.stats.binom.ppf(X, trials, p) invBinomial
scipy.stats.chi2.ppf(x, df) invChiSquare
scipy.stats.expon.ppf(x, scale=mean) invExp
scipy.stats.f.ppf(X, dfn, dfd) invF
scipy.stats.gamma.ppf(X, shape, scale=scale) invGamma
scipy.stats.logistic.ppf(X, loc=mean,scale=scale) invLogistic
scipy.stats.norm.ppf(X, loc=mean, scale=stdev) invNormal
scipy.stats.poisson.ppf(X, mu=mean) invPoisson
scipy.stats.t.ppf(X, df) invStudent
scipy.stats.uniform.ppf(X, loc=lower, scale=upper-lower) invUniform
scipy.stats.weibull_min.ppf(X, alpha, scale=beta) invWeibull
scipy.stats.chisquare chiSquareTest
scipy.stats.f_oneway fTest
scipy.stats.ttest_ind tTest
scipy.stats.ks_2samp ksTest
scipy.stats.shapiro shapiroTest
scipy.stats.mannwhitneyu mannWhitneyUTest
scipy.stats.mstats.winsorize winsorize
scipy. stats.kurtosis kurtosis
scipy.stats.skew skew
scipy.stats.sem sem
scipy.stats.zscore(ddof=1) zscore

5. statsmodels

statsmodels 函数 DolphinDB 函数
statsmodels.api.tsa.acf acf
statsmodels.tsa.seasonal.STL stl
statsmodels.stats.weightstats.ztest zTest
statsmodels.multivariate.manova.MANOVA manova
statsmodels.api.stats.anova_lm anova
statsmodels.regression.linear_model.OLS olsolsEx
statsmodels.regression.linear_model.WLS wls

6. sklearn

sklearn 函数 DolphinDB 函数
sklearn.linear_model.LinearRegression().fit(Y, X).coef_ beta(X, Y)
sklearn.metrics.mutual_info_score mutualInfo
sklearn.ensemble.AdaBoostClassifier adaBoostClassifier
sklearn.ensemble.AdaBoostRegressor adaBoostRegressor
sklearn.ensemble.RandomForestClassifier randomForestClassifier
sklearn.ensemble.RandomForestRegressor randomForestRegressor
sklearn.naive_bayes.GaussianNB gaussianNB
sklearn.naive_bayes.MultinomialNB multinomialNB
sklearn.linear_model.LogisticRegression logisticRegression
sklearn.mixture.GaussianMixture gmm
sklearn.cluster.k_means kmeans
sklearn.neighbors.KNeighborsClassifier knn
sklearn.linear_model.ElasticNet elasticNet
sklearn.linear_model.Lasso lasso
sklearn.linear_model.Ridge ridge
sklearn.decomposition.PCA pca

7. TA-lib

TA-lib 函数 DolphinDB 函数
talib.MA ma
talib.EMA ema
talib.WMA wma
talib.SMA sma
talib.TRIMA trima
talib.TEMA tema
talib.DEMA dema
talib.KAMA kama
talib.T3 t3
talib.LINEARREG_SLOPE / talib.LINEARREG_INTERCEPT linearTimeTrend
talib.TRANGE trueRange

以上仅列出 DolphinDB 的内置的 TA-lib 函数。有关 TA-lib 指标函数的更多详细信息,参考 DolphinDB 的 ta-lib 模块