Skip to content

Latest commit

 

History

History
284 lines (261 loc) · 20.3 KB

function_mapping_python.md

File metadata and controls

284 lines (261 loc) · 20.3 KB

Function Mappings: From Python to DolphinDB

This page shows the corresponding DolphinDB functions for selected Python functions.

The DolphinDB functions listed below are supported in version 2.00 (refer to DolphinDB manual for more information).

The following python libraries are covered:

1. Python built-in function

Python DolphinDB
all all
any any
in in
== eq
equals eqObj
abs abs
len strlen / size
pow pow
print print
set set
dict dict
str string
int int
bool bool
round round
slice slice
type type / typestr
zip loop(pair, x, y)
join concat
format strReplace
sort isort
rjust /zfill lpad /rpad
lead / lag move
itertools.product cross + join

2. NumPy

NumPy DolphinDB
numpy.median med
numpy.var(ddof=1) var
numpy.var varp
numpy.cov covarMatrix
numpy.cov(fweights) wcovar
numpy.std(ddof=1) std
numpy.std stdp
numpy.percentile / pandas.Series.percentile percentile
numpy.quantile / pandas.Series.quantile quantile
numpy.quantile quantileSeries
numpy.corrcoef corrMatrix
numpy.random.beta randBeta
numpy.random.binomial randBinomial
numpy.random.chisquare randChiSquare
numpy.random.exponential randExp
numpy.random.f randF
numpy.random.gamma randGamma
numpy.random.logistic randLogistic
numpy.random.normal randNormal
numpy.random.multivariate_normal randMultivariateNormal
numpy.random.poisson randPoisson
numpy.random.standard_t randStudent
numpy.random.rand rand
numpy.argsort isort/isort!
numpy.averge(weight) wavg
numpy.random.uniform randUniform
numpy.random.weibull randWeibull
numpy.max max
numpy.min min
numpy.mean mean/avg
numpy.sum sum
nump.random.normal norm
nump.clip winsorize

3. Pandas

Pandas DolphinDB
df[column] at
pandas.Series.loc / pandas.DataFrame.loc loc
pandas.Series.iat / pandas.DataFrame.iat cell
pandas.Series.iloc / pandas.DataFrame.iloc cells
pandas.Series.align / pandas.DataFrame.align align
pandas.unique / pandas.DataFrame.unique / pandas.Series.unique distinct
pandas.concat concatMatrix
pandas.DataFrame.add / pandas.Series.add withNullFill + add
pandas.DataFrame.sub / pandas.Series.sub withNullFill + sub
pandas.DataFrame.mul / pandas.Series.mul withNullFill + mul
pandas.DataFrame.div / pandas.Series.div withNullFill + div / ratio
pandas.DataFrame.pivot pivot / panel
pandas.DataFrame.melt unpivot
pandas.DataFrame.merge / pandas.DataFrame.join merge
pandas.DataFrame.ewm.var ewmVar
pandas.Series.cov covar
pandas.DataFrame.ewm.cov ewmCov
pandas.ewmstd ewmStd
pandas.DataFrame.corr / pandas.Series.corr corr
pandas.DataFrame.std / pandas.Series.std std
pandas.DataFrame.median / pandas.Series.median med
pandas.DataFrame.ewm.corr ewmCorr
pandas.DataFrame.max / pandas.Series.max max
pandas.DataFrame.min / pandas.Series.min min
pandas.DataFrame.mean / pandas.Series.mean mean/avg
pandas.DataFrame.ewm.mean ewmMean
pandas.DataFrame.sum / pandas.Series.sum sum
pandas.DataFrame.prod / pandas.Series.prod prod
pandas.DataFrame.nunique / pandas.Series.nunique nunique
pandas.DataFrame.hist / pandas.Series.hist plotHist
pandas.DataFrame.sem / pandas.Series.sem sem
pandas.DataFrame.mad / pandas.Series.mad mad (useMedian=false)
pandas.DataFrame.kurt(kurtosis) / pandas.Series.kurt(kurtosis) kurtosis
pandas.DataFrame.skew / pandas.Series.kurt(skew) skew
pandas.DataFrame.count / pandas.Series.count count
pandas.DataFrame.idxmax / pandas.Series.idxmax imax
pandas.DataFrame.idxmin / pandas.Series.idxmin imin
pandas.DataFrame.cummax / pandas.Series.cummax cummax
pandas.DataFrame.cummin / pandas.Series.cummin cummin
pandas.DataFrame.cumsum / pandas.Series.cumsum cumsum
pandas.DataFrame.cumprod / pandas.Series.cumprod cumprod
pandas.DataFrame.nlargest(nsmallest) / pandas.Series.nlargest(nsmallest) top + order by / aggrTopN
pandas.DataFrame.diff / pandas.Series.diff eachPost, deltas
pandas.DataFrame.quantile / pandas.Series.quantile quantile
pandas.DataFrame.transpose transpose
pandas.Series.resample / pandas.DataFrame.resample resample
pandas.Series.copy / pandas.DataFrame.copy copy
pandas.Series.describe / pandas.DataFrame.describe 类似 stat
pandas.DataFrame.isnull/pandas.DataFrame.isna isNull
pandas.DataFrame.notnull/pandas.DataFrame.notna isValid
pandas.Series.between between
pandas.Series.is_monotonic_decreasing isMonotonicIncreasing
pandas.Series.is_monotonic_increasing isMonotonicDecreasing
pandas.DataFrame.mask / pandas.Series.mask mask
pandas.DataFrame.bfill / pandas.Series.bfill bfill/bfill!
pandas.DataFrame.ffill / pandas.Series.ffill ffill/ffill!
pandas.DataFrame.interpolate / pandas.Series.interpolate interpolate
pandas.DataFrame.interpolate(method='linear') / pandas.Series.interpolate(method='linear') lfill/lfill!
pandas.DataFrame.fillna / pandas.Series.fillna nullFill/nullFill!
pandas.DataFrame.sort_values / pandas.Series.sort_values sort/sort!
pandas.DataFrame.head / pandas.Series.head head
pandas.DataFrame.tail / pandas.Series.tail tail
pandas.DataFrame.drop / pandas.Series.drop dropColumns!
pandas.DataFrame.dropna / pandas.Series.dropna dropna
pandas.DataFrame.rename rename!
pandas.DataFrame.append / pandas.Series.append append!
pandas.DataFrame.keys / pandas.Series.keys rowNames / columnNames
pandas.DataFrame.astype / pandas.Series.astype cast
pandas.DataFrame.isin / pandas.Series.isin in
pandas.Series.str.isspace isSpace
pandas.Series.str.isalnum isAlNum
pandas.Series.str.isalpha isAlpha
pandas.Series.str.isnumeric isNumeric
pandas.Series.str.isdecimal isDecimal
pandas.Series.str.isdigit isDigit
pandas.Series.str.islower isLower
pandas.Series.str.isupper isUpper
pandas.Series.str.istitle isTitle
pandas.Series.str.startswith startsWith
pandas.Series.str.endswith endsWith
pandas.Series.str.find regexFind
pandas.Series.str.replace strReplace
pandas.Series.duplicated /pandas.DataFrame.duplicated isDuplicated
pandas.Series.rank / pandas.DataFrame.rank rank
pandas.Series.rank(method='dense') / pandas.DataFrame.rank(method='dense') denseRank
pandas.read_csv loadText / loadTextEx
pandas.to_csv saveText
pandas.read_json fromJson
pandas.DataFrame.to_json / pandas.Series.to_json toJson
pandas.DataFrame.groupby.aggFunc regroup, group by
pandas.to_datetime temporalParse
pandas.DataFrame.rolling / pandas.Series.rolling moving
pandas.rolling_mean mavg
pandas.rolling_std mstd
pandas.rolling_median mmed
pandas.DataFrame.shift / pandas.Series.shift move / tmove / prev / next

4. SciPy

SciPy DolphinDB
scipy.stats.percentileofscore percentileRank
scipy.stats.spearmanr(X, Y)[0] spearmanr(X, Y)
scipy.spatial.distance.euclidean euclidean
scipy.stats.beta.cdf(X, a, b) cdfBeta(a, b, X)
scipy.stats.binom.cdf(X, trials, p) cdfBinomial(trials, p, X)
scipy.stats.chi2.cdf(x, df) cdfChiSquare(df, X)
scipy.stats.expon.cdf(x, scale=mean) cdfExp(mean, X)
scipy.stats.f.cdf(X, dfn, dfd) cdfF(dfn, dfd, X)
scipy.stats.gamma.cdf(X, shape, scale=scale) cdfGamma(shape, scale, X)
scipy.stats.logistic.cdf(X, loc=mean,scale=scale) cdfLogistic(mean, scale, X)
scipy.stats.norm.cdf(X, loc=mean, scale=stdev) cdfNormal(mean,stdev,X)
scipy.stats.poisson.cdf(X, mu=mean) cdfPoisson(mean, X)
scipy.stats.t.cdf(X, df) cdfStudent(df, X)
scipy.stats.uniform.cdf(X, loc=lower, scale=upper-lower) cdfUniform(lower, upper, X)
scipy.stats.weibull_min.cdf(X, alpha, scale=beta) cdfWeibull(alpha, beta, X)
scipy.stats.zipfian.cdf(X, exponent, num) cdfZipf(num, exponent, X)
scipy.stats.beta.ppf(X, a, b) invBeta
scipy.stats.binom.ppf(X, trials, p) invBinomial
scipy.stats.chi2.ppf(x, df) invChiSquare
scipy.stats.expon.ppf(x, scale=mean) invExp
scipy.stats.f.ppf(X, dfn, dfd) invF
scipy.stats.gamma.ppf(X, shape, scale=scale) invGamma
scipy.stats.logistic.ppf(X, loc=mean,scale=scale) invLogistic
scipy.stats.norm.ppf(X, loc=mean, scale=stdev) invNormal
scipy.stats.poisson.ppf(X, mu=mean) invPoisson
scipy.stats.t.ppf(X, df) invStudent
scipy.stats.uniform.ppf(X, loc=lower, scale=upper-lower) invUniform
scipy.stats.weibull_min.ppf(X, alpha, scale=beta) invWeibull
scipy.stats.chisquare chiSquareTest
scipy.stats.f_oneway fTest
scipy.stats.ttest_ind tTest
scipy.stats.ks_2samp ksTest
scipy.stats.shapiro shapiroTest
scipy.stats.mannwhitneyu mannWhitneyUTest
scipy.stats.mstats.winsorize winsorize
scipy. stats.kurtosis kurtosis
scipy.stats.skew skew
scipy.stats.sem sem
scipy.stats.zscore(ddof=1) zscore

5. Statsmodels

Statsmodels DolphinDB
statsmodels.api.tsa.acf acf
statsmodels.tsa.seasonal.STL stl
statsmodels.stats.weightstats.ztest zTest
statsmodels.multivariate.manova.MANOVA manova
statsmodels.api.stats.anova_lm anova
statsmodels.regression.linear_model.OLS olsolsEx
statsmodels.regression.linear_model.WLS wls

6. sklearn

sklearn DolphinDB
sklearn.linear_model.LinearRegression().fit(Y, X).coef_ beta(X, Y)
sklearn.metrics.mutual_info_score mutualInfo
sklearn.ensemble.AdaBoostClassifier adaBoostClassifier
sklearn.ensemble.AdaBoostRegressor adaBoostRegressor
sklearn.ensemble.RandomForestClassifier randomForestClassifier
sklearn.ensemble.RandomForestRegressor randomForestRegressor
sklearn.naive_bayes.GaussianNB gaussianNB
sklearn.naive_bayes.MultinomialNB multinomialNB
sklearn.linear_model.LogisticRegression logisticRegression
sklearn.mixture.GaussianMixture gmm
sklearn.cluster.k_means kmeans
sklearn.neighbors.KNeighborsClassifier knn
sklearn.linear_model.ElasticNet elasticNet
sklearn.linear_model.Lasso lasso
sklearn.linear_model.Ridge ridge
sklearn.decomposition.PCA pca

7. TA-lib

TA-lib DolphinDB
talib.MA ma
talib.EMA ema
talib.WMA wma
talib.SMA sma
talib.TRIMA trima
talib.TEMA tema
talib.DEMA dema
talib.KAMA kama
talib.T3 t3
talib.LINEARREG_SLOPE / talib.LINEARREG_INTERCEPT linearTimeTrend
talib.TRANGE trueRange

The functions listed above are DolphinDB built-in functions. More TA-lib functions are provided in DolphinDB ta module. Refer to DolphinDB tutorial: Technical Analysis Indicator Library for more information.

Note: Contact us via [email protected] or comment below to send us feedback or report any problems you find.