From e4bf0d4598e95e5cf8ed2f054f7d2feb97675853 Mon Sep 17 00:00:00 2001 From: HalfSweet <60973476+HalfSweet@users.noreply.github.com> Date: Tue, 27 Feb 2024 13:01:19 +0000 Subject: [PATCH] docs: Update code block syntax in docs/index.rst --- docs/index.rst | 112 ++++++++++++++++++++++++++++++------------------- 1 file changed, 68 insertions(+), 44 deletions(-) diff --git a/docs/index.rst b/docs/index.rst index 91e5086cc..71ae71416 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -31,7 +31,9 @@ failures. See `Compatibility `_ for more details. Please note that the master branch may contain unreleased features. For release documentation, please see readthedocs and/or python's inline help. ->>> pip install kafka-python +.. code:: bash + + pip install kafka-python KafkaConsumer @@ -47,28 +49,36 @@ See `KafkaConsumer `_ for API and configuration detai The consumer iterator returns ConsumerRecords, which are simple namedtuples that expose basic message attributes: topic, partition, offset, key, and value: ->>> from kafka import KafkaConsumer ->>> consumer = KafkaConsumer('my_favorite_topic') ->>> for msg in consumer: -... print (msg) +.. code:: python + + from kafka import KafkaConsumer + consumer = KafkaConsumer('my_favorite_topic') + for msg in consumer: + print (msg) + +.. code:: python ->>> # join a consumer group for dynamic partition assignment and offset commits ->>> from kafka import KafkaConsumer ->>> consumer = KafkaConsumer('my_favorite_topic', group_id='my_favorite_group') ->>> for msg in consumer: -... print (msg) + # join a consumer group for dynamic partition assignment and offset commits + from kafka import KafkaConsumer + consumer = KafkaConsumer('my_favorite_topic', group_id='my_favorite_group') + for msg in consumer: + print (msg) ->>> # manually assign the partition list for the consumer ->>> from kafka import TopicPartition ->>> consumer = KafkaConsumer(bootstrap_servers='localhost:1234') ->>> consumer.assign([TopicPartition('foobar', 2)]) ->>> msg = next(consumer) +.. code:: python ->>> # Deserialize msgpack-encoded values ->>> consumer = KafkaConsumer(value_deserializer=msgpack.loads) ->>> consumer.subscribe(['msgpackfoo']) ->>> for msg in consumer: -... assert isinstance(msg.value, dict) + # manually assign the partition list for the consumer + from kafka import TopicPartition + consumer = KafkaConsumer(bootstrap_servers='localhost:1234') + consumer.assign([TopicPartition('foobar', 2)]) + msg = next(consumer) + +.. code:: python + + # Deserialize msgpack-encoded values + consumer = KafkaConsumer(value_deserializer=msgpack.loads) + consumer.subscribe(['msgpackfoo']) + for msg in consumer: + assert isinstance(msg.value, dict) KafkaProducer @@ -78,36 +88,50 @@ KafkaProducer The class is intended to operate as similarly as possible to the official java client. See `KafkaProducer `_ for more details. ->>> from kafka import KafkaProducer ->>> producer = KafkaProducer(bootstrap_servers='localhost:1234') ->>> for _ in range(100): -... producer.send('foobar', b'some_message_bytes') +.. code:: python + + from kafka import KafkaProducer + producer = KafkaProducer(bootstrap_servers='localhost:1234') + for _ in range(100): + producer.send('foobar', b'some_message_bytes') + +.. code:: python + + # Block until a single message is sent (or timeout) + future = producer.send('foobar', b'another_message') + result = future.get(timeout=60) + +.. code:: python + + # Block until all pending messages are at least put on the network + # NOTE: This does not guarantee delivery or success! It is really + # only useful if you configure internal batching using linger_ms + producer.flush() + +.. code:: python + + # Use a key for hashed-partitioning + producer.send('foobar', key=b'foo', value=b'bar') ->>> # Block until a single message is sent (or timeout) ->>> future = producer.send('foobar', b'another_message') ->>> result = future.get(timeout=60) +.. code:: python ->>> # Block until all pending messages are at least put on the network ->>> # NOTE: This does not guarantee delivery or success! It is really ->>> # only useful if you configure internal batching using linger_ms ->>> producer.flush() + # Serialize json messages + import json + producer = KafkaProducer(value_serializer=lambda v: json.dumps(v).encode('utf-8')) + producer.send('fizzbuzz', {'foo': 'bar'}) ->>> # Use a key for hashed-partitioning ->>> producer.send('foobar', key=b'foo', value=b'bar') +.. code:: python ->>> # Serialize json messages ->>> import json ->>> producer = KafkaProducer(value_serializer=lambda v: json.dumps(v).encode('utf-8')) ->>> producer.send('fizzbuzz', {'foo': 'bar'}) + # Serialize string keys + producer = KafkaProducer(key_serializer=str.encode) + producer.send('flipflap', key='ping', value=b'1234') ->>> # Serialize string keys ->>> producer = KafkaProducer(key_serializer=str.encode) ->>> producer.send('flipflap', key='ping', value=b'1234') +.. code:: python ->>> # Compress messages ->>> producer = KafkaProducer(compression_type='gzip') ->>> for i in range(1000): -... producer.send('foobar', b'msg %d' % i) + # Compress messages + producer = KafkaProducer(compression_type='gzip') + for i in range(1000): + producer.send('foobar', b'msg %d' % i) Thread safety