forked from umd-memsys/DRAMSim2
-
Notifications
You must be signed in to change notification settings - Fork 11
/
ClockDomain.cpp
125 lines (100 loc) · 3.17 KB
/
ClockDomain.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#include "ClockDomain.h"
using namespace std;
namespace ClockDomain
{
// "Default" crosser with a 1:1 ratio
ClockDomainCrosser::ClockDomainCrosser(ClockUpdateCB *_callback)
: callback(_callback), clock1(1UL), clock2(1UL), counter1(0UL), counter2(0UL)
{
}
ClockDomainCrosser::ClockDomainCrosser(uint64_t _clock1, uint64_t _clock2, ClockUpdateCB *_callback)
: callback(_callback), clock1(_clock1), clock2(_clock2), counter1(0), counter2(0)
{
//cout << "CTOR: callback address: " << (uint64_t)(this->callback) << "\t ratio="<<clock1<<"/"<<clock2<< endl;
}
ClockDomainCrosser::ClockDomainCrosser(double ratio, ClockUpdateCB *_callback)
: callback(_callback), counter1(0), counter2(0)
{
// Compute numerator and denominator for ratio, then pass that to other constructor.
double x = ratio;
const int MAX_ITER = 15;
size_t i;
unsigned ns[MAX_ITER], ds[MAX_ITER];
double zs[MAX_ITER];
ds[0] = 0;
ds[1] = 1;
zs[1] = x;
ns[1] = (int)x;
for (i = 1; i<MAX_ITER-1; i++)
{
if (fabs(x - (double)ns[i]/(double)ds[i]) < 0.00005)
{
//printf("ANSWER= %u/%d\n",ns[i],ds[i]);
break;
}
//TODO: or, if the answers are the same as the last iteration, stop
zs[i+1] = 1.0f/(zs[i]-(int)floor(zs[i])); // 1/(fractional part of z_i)
ds[i+1] = ds[i]*(int)floor(zs[i+1])+ds[i-1];
double tmp = x*ds[i+1];
double tmp2 = tmp - (int)tmp;
ns[i+1] = tmp2 >= 0.5 ? ceil(tmp) : floor(tmp); // ghetto implementation of a rounding function
//printf("i=%lu, z=%20f n=%5u d=%5u\n",i,zs[i],ns[i],ds[i]);
}
//printf("APPROXIMATION= %u/%d\n",ns[i],ds[i]);
this->clock1=ns[i];
this->clock2=ds[i];
//cout << "CTOR: callback address: " << (uint64_t)(this->callback) << "\t ratio="<<clock1<<"/"<<clock2<< endl;
}
void ClockDomainCrosser::update()
{
//short circuit case for 1:1 ratios
if (clock1 == clock2 && callback)
{
(*callback)();
return;
}
// Update counter 1.
counter1 += clock1;
while (counter2 < counter1)
{
counter2 += clock2;
//cout << "CALLBACK: counter1= " << counter1 << "; counter2= " << counter2 << "; " << endl;
//cout << "callback address: " << (uint64_t)callback << endl;
if (callback)
{
//cout << "Callback() " << (uint64_t)callback<< "Counters: 1="<<counter1<<", 2="<<counter2 <<endl;
(*callback)();
}
}
if (counter1 == counter2)
{
counter1 = 0;
counter2 = 0;
}
}
void TestObj::cb()
{
cout << "In Callback\n";
}
int TestObj::test()
{
ClockUpdateCB *callback = new Callback<TestObj, void>(this, &TestObj::cb);
//ClockDomainCrosser x(5,2,&cb);
//ClockDomainCrosser x(2,5,NULL);
//ClockDomainCrosser x(37,41,NULL);
//ClockDomainCrosser x(41,37,NULL);
//cout << "(main) callback address: " << (uint64_t)&cb << endl;
ClockDomainCrosser x(0.5, callback);
cout <<"------------------------------------------\n";
ClockDomainCrosser y(0.3333, callback);
cout <<"------------------------------------------\n";
ClockDomainCrosser z(0.9, callback);
cout <<"------------------------------------------\n";
for (int i=0; i<10; i++)
{
x.update();
cout << "UPDATE: counter1= " << x.counter1 << "; counter2= " << x.counter2 << "; " << endl;
}
return 0;
}
}