forked from panditanvita/BTCpredictor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deopt.m
executable file
·305 lines (274 loc) · 15.4 KB
/
deopt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function: [FVr_bestmem,S_bestval,I_nfeval] = deopt(fname,S_struct)
%
% Author: Rainer Storn, Ken Price, Arnold Neumaier, Jim Van Zandt
% Description: Minimization of a user-supplied function with respect to x(1:I_D),
% using the differential evolution (DE) algorithm.
% DE works best if [FVr_minbound,FVr_maxbound] covers the region where the
% global minimum is expected. DE is also somewhat sensitive to
% the choice of the stepsize F_weight. A good initial guess is to
% choose F_weight from interval [0.5, 1], e.g. 0.8. F_CR, the crossover
% probability constant from interval [0, 1] helps to maintain
% the diversity of the population but should be close to 1 for most.
% practical cases. Only separable problems do better with CR close to 0.
% If the parameters are correlated, high values of F_CR work better.
% The reverse is true for no correlation.
%
% The number of population members I_NP is also not very critical. A
% good initial guess is 10*I_D. Depending on the difficulty of the
% problem I_NP can be lower than 10*I_D or must be higher than 10*I_D
% to achieve convergence.
%
% deopt is a vectorized variant of DE which, however, has a
% property which differs from the original version of DE:
% The random selection of vectors is performed by shuffling the
% population array. Hence a certain vector can't be chosen twice
% in the same term of the perturbation expression.
% Due to the vectorized expressions deopt executes fairly fast
% in MATLAB's interpreter environment.
%
% Parameters: fname (I) String naming a function f(x,y) to minimize.
% S_struct (I) Problem data vector (must remain fixed during the
% minimization). For details see Rundeopt.m.
% ---------members of S_struct----------------------------------------------------
% F_VTR (I) "Value To Reach". deopt will stop its minimization
% if either the maximum number of iterations "I_itermax"
% is reached or the best parameter vector "FVr_bestmem"
% has found a value f(FVr_bestmem,y) <= F_VTR.
% FVr_minbound (I) Vector of lower bounds FVr_minbound(1) ... FVr_minbound(I_D)
% of initial population.
% *** note: these are not bound constraints!! ***
% FVr_maxbound (I) Vector of upper bounds FVr_maxbound(1) ... FVr_maxbound(I_D)
% of initial population.
% I_D (I) Number of parameters of the objective function.
% I_NP (I) Number of population members.
% I_itermax (I) Maximum number of iterations (generations).
% F_weight (I) DE-stepsize F_weight from interval [0, 2].
% F_CR (I) Crossover probability constant from interval [0, 1].
% I_strategy (I) 1 --> DE/rand/1
% 2 --> DE/local-to-best/1
% 3 --> DE/best/1 with jitter
% 4 --> DE/rand/1 with per-vector-dither
% 5 --> DE/rand/1 with per-generation-dither
% 6 --> DE/rand/1 either-or-algorithm
% I_refresh (I) Intermediate output will be produced after "I_refresh"
% iterations. No intermediate output will be produced
% if I_refresh is < 1.
%
% Return value: FVr_bestmem (O) Best parameter vector.
% S_bestval.I_nc (O) Number of constraints
% S_bestval.FVr_ca (O) Constraint values. 0 means the constraints
% are met. Values > 0 measure the distance
% to a particular constraint.
% S_bestval.I_no (O) Number of objectives.
% S_bestval.FVr_oa (O) Objective function values.
% I_nfeval (O) Number of function evaluations.
%
% Note:
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 1, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details. A copy of the GNU
% General Public License can be obtained from the
% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [FVr_bestmem,S_bestval,I_nfeval] = deopt(fname,S_struct)
%-----This is just for notational convenience and to keep the code uncluttered.--------
I_NP = S_struct.I_NP;
F_weight = S_struct.F_weight;
F_CR = S_struct.F_CR;
I_D = S_struct.I_D;
FVr_minbound = S_struct.FVr_minbound;
FVr_maxbound = S_struct.FVr_maxbound;
I_bnd_constr = S_struct.I_bnd_constr;
I_itermax = S_struct.I_itermax;
F_VTR = S_struct.F_VTR;
I_strategy = S_struct.I_strategy;
I_refresh = S_struct.I_refresh;
I_plotting = S_struct.I_plotting;
%-----Check input variables---------------------------------------------
if (I_NP < 5)
I_NP=5;
fprintf(1,' I_NP increased to minimal value 5\n');
end
if ((F_CR < 0) | (F_CR > 1))
F_CR=0.5;
fprintf(1,'F_CR should be from interval [0,1]; set to default value 0.5\n');
end
if (I_itermax <= 0)
I_itermax = 200;
fprintf(1,'I_itermax should be > 0; set to default value 200\n');
end
I_refresh = floor(I_refresh);
%-----Initialize population and some arrays-------------------------------
FM_pop = zeros(I_NP,I_D); %initialize FM_pop to gain speed
%----FM_pop is a matrix of size I_NPx(I_D+1). It will be initialized------
%----with random values between the min and max values of the-------------
%----parameters-----------------------------------------------------------
for k=1:I_NP
FM_pop(k,:) = FVr_minbound + rand(1,I_D).*(FVr_maxbound - FVr_minbound);
end
FM_popold = zeros(size(FM_pop)); % toggle population
FVr_bestmem = zeros(1,I_D);% best population member ever
FVr_bestmemit = zeros(1,I_D);% best population member in iteration
I_nfeval = 0; % number of function evaluations
%------Evaluate the best member after initialization----------------------
I_best_index = 1; % start with first population member
S_val(1) = feval(fname,FM_pop(I_best_index,:),S_struct);
S_bestval = S_val(1); % best objective function value so far
I_nfeval = I_nfeval + 1;
for k=2:I_NP % check the remaining members
S_val(k) = feval(fname,FM_pop(k,:),S_struct);
I_nfeval = I_nfeval + 1;
if (left_win(S_val(k),S_bestval) == 1)
I_best_index = k; % save its location
S_bestval = S_val(k);
end
end
FVr_bestmemit = FM_pop(I_best_index,:); % best member of current iteration
S_bestvalit = S_bestval; % best value of current iteration
FVr_bestmem = FVr_bestmemit; % best member ever
%------DE-Minimization---------------------------------------------
%------FM_popold is the population which has to compete. It is--------
%------static through one iteration. FM_pop is the newly--------------
%------emerging population.----------------------------------------
FM_pm1 = zeros(I_NP,I_D); % initialize population matrix 1
FM_pm2 = zeros(I_NP,I_D); % initialize population matrix 2
FM_pm3 = zeros(I_NP,I_D); % initialize population matrix 3
FM_pm4 = zeros(I_NP,I_D); % initialize population matrix 4
FM_pm5 = zeros(I_NP,I_D); % initialize population matrix 5
FM_bm = zeros(I_NP,I_D); % initialize FVr_bestmember matrix
FM_ui = zeros(I_NP,I_D); % intermediate population of perturbed vectors
FM_mui = zeros(I_NP,I_D); % mask for intermediate population
FM_mpo = zeros(I_NP,I_D); % mask for old population
FVr_rot = (0:1:I_NP-1); % rotating index array (size I_NP)
FVr_rotd = (0:1:I_D-1); % rotating index array (size I_D)
FVr_rt = zeros(I_NP); % another rotating index array
FVr_rtd = zeros(I_D); % rotating index array for exponential crossover
FVr_a1 = zeros(I_NP); % index array
FVr_a2 = zeros(I_NP); % index array
FVr_a3 = zeros(I_NP); % index array
FVr_a4 = zeros(I_NP); % index array
FVr_a5 = zeros(I_NP); % index array
FVr_ind = zeros(4);
FM_meanv = ones(I_NP,I_D);
I_iter = 1;
while ((I_iter < I_itermax) & (S_bestval.FVr_oa(1) > F_VTR))
FM_popold = FM_pop; % save the old population
S_struct.FM_pop = FM_pop;
S_struct.FVr_bestmem = FVr_bestmem;
FVr_ind = randperm(4); % index pointer array
FVr_a1 = randperm(I_NP); % shuffle locations of vectors
FVr_rt = rem(FVr_rot+FVr_ind(1),I_NP); % rotate indices by ind(1) positions
FVr_a2 = FVr_a1(FVr_rt+1); % rotate vector locations
FVr_rt = rem(FVr_rot+FVr_ind(2),I_NP);
FVr_a3 = FVr_a2(FVr_rt+1);
FVr_rt = rem(FVr_rot+FVr_ind(3),I_NP);
FVr_a4 = FVr_a3(FVr_rt+1);
FVr_rt = rem(FVr_rot+FVr_ind(4),I_NP);
FVr_a5 = FVr_a4(FVr_rt+1);
FM_pm1 = FM_popold(FVr_a1,:); % shuffled population 1
FM_pm2 = FM_popold(FVr_a2,:); % shuffled population 2
FM_pm3 = FM_popold(FVr_a3,:); % shuffled population 3
FM_pm4 = FM_popold(FVr_a4,:); % shuffled population 4
FM_pm5 = FM_popold(FVr_a5,:); % shuffled population 5
for k=1:I_NP % population filled with the best member
FM_bm(k,:) = FVr_bestmemit; % of the last iteration
end
FM_mui = rand(I_NP,I_D) < F_CR; % all random numbers < F_CR are 1, 0 otherwise
%----Insert this if you want exponential crossover.----------------
%FM_mui = sort(FM_mui'); % transpose, collect 1's in each column
%for k = 1:I_NP
% n = floor(rand*I_D);
% if (n > 0)
% FVr_rtd = rem(FVr_rotd+n,I_D);
% FM_mui(:,k) = FM_mui(FVr_rtd+1,k); %rotate column k by n
% end
%end
%FM_mui = FM_mui'; % transpose back
%----End: exponential crossover------------------------------------
FM_mpo = FM_mui < 0.5; % inverse mask to FM_mui
if (I_strategy == 1) % DE/rand/1
FM_ui = FM_pm3 + F_weight*(FM_pm1 - FM_pm2); % differential variation
FM_ui = FM_popold.*FM_mpo + FM_ui.*FM_mui; % crossover
FM_origin = FM_pm3;
elseif (I_strategy == 2) % DE/local-to-best/1
FM_ui = FM_popold + F_weight*(FM_bm-FM_popold) + F_weight*(FM_pm1 - FM_pm2);
FM_ui = FM_popold.*FM_mpo + FM_ui.*FM_mui;
FM_origin = FM_popold;
elseif (I_strategy == 3) % DE/best/1 with jitter
FM_ui = FM_bm + (FM_pm1 - FM_pm2).*((1-0.9999)*rand(I_NP,I_D)+F_weight);
FM_ui = FM_popold.*FM_mpo + FM_ui.*FM_mui;
FM_origin = FM_bm;
elseif (I_strategy == 4) % DE/rand/1 with per-vector-dither
f1 = ((1-F_weight)*rand(I_NP,1)+F_weight);
for k=1:I_D
FM_pm5(:,k)=f1;
end
FM_ui = FM_pm3 + (FM_pm1 - FM_pm2).*FM_pm5; % differential variation
FM_origin = FM_pm3;
FM_ui = FM_popold.*FM_mpo + FM_ui.*FM_mui; % crossover
elseif (I_strategy == 5) % DE/rand/1 with per-vector-dither
f1 = ((1-F_weight)*rand+F_weight);
FM_ui = FM_pm3 + (FM_pm1 - FM_pm2)*f1; % differential variation
FM_origin = FM_pm3;
FM_ui = FM_popold.*FM_mpo + FM_ui.*FM_mui; % crossover
else % either-or-algorithm
if (rand < 0.5); % Pmu = 0.5
FM_ui = FM_pm3 + F_weight*(FM_pm1 - FM_pm2);% differential variation
FM_origin = FM_pm3;
else % use F-K-Rule: K = 0.5(F+1)
FM_ui = FM_pm3 + 0.5*(F_weight+1.0)*(FM_pm1 + FM_pm2 - 2*FM_pm3);
end
FM_ui = FM_popold.*FM_mpo + FM_ui.*FM_mui; % crossover
end
%-----Optional parent+child selection-----------------------------------------
%-----Select which vectors are allowed to enter the new population------------
for k=1:I_NP
%=====Only use this if boundary constraints are needed==================
if (I_bnd_constr == 1)
for j=1:I_D %----boundary constraints via bounce back-------
if (FM_ui(k,j) > FVr_maxbound(j))
FM_ui(k,j) = FVr_maxbound(j) + rand*(FM_origin(k,j) - FVr_maxbound(j));
end
if (FM_ui(k,j) < FVr_minbound(j))
FM_ui(k,j) = FVr_minbound(j) + rand*(FM_origin(k,j) - FVr_minbound(j));
end
end
end
%=====End boundary constraints==========================================
S_tempval = feval(fname,FM_ui(k,:),S_struct); % check cost of competitor
I_nfeval = I_nfeval + 1;
if (left_win(S_tempval,S_val(k)) == 1)
FM_pop(k,:) = FM_ui(k,:); % replace old vector with new one (for new iteration)
S_val(k) = S_tempval; % save value in "cost array"
%----we update S_bestval only in case of success to save time-----------
if (left_win(S_tempval,S_bestval) == 1)
S_bestval = S_tempval; % new best value
FVr_bestmem = FM_ui(k,:); % new best parameter vector ever
end
end
end % for k = 1:NP
FVr_bestmemit = FVr_bestmem; % freeze the best member of this iteration for the coming
% iteration. This is needed for some of the strategies.
%----Output section----------------------------------------------------------
if (I_refresh > 0)
if ((rem(I_iter,I_refresh) == 0) | I_iter == 1)
fprintf(1,'Iteration: %d, Best: %f, F_weight: %f, F_CR: %f, I_NP: %d\n',I_iter,S_bestval.FVr_oa(1),F_weight,F_CR,I_NP);
%var(FM_pop)
format long e;
for n=1:I_D
fprintf(1,'best(%d) = %g\n',n,FVr_bestmem(n));
end
if (I_plotting == 1)
PlotIt(FVr_bestmem,I_iter,S_struct);
end
end
end
I_iter = I_iter + 1;
end %---end while ((I_iter < I_itermax) ...