forked from NVlabs/stylegan2-ada
-
Notifications
You must be signed in to change notification settings - Fork 56
/
aydao_flesh_digressions.py
136 lines (109 loc) · 6.33 KB
/
aydao_flesh_digressions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#
# ~~ Flesh Digressions ~~
# Or, Circular Interpolation of the StyleGAN Synthesis Network's Constant Layer
# ~~~ aydao ~~~~ 2020 ~~~
#
# Based on halcy's circular interpolation script https://pastebin.com/RTtV2UY7
#
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import dnnlib
import dnnlib.tflib as tflib
import math
import moviepy.editor
from numpy import linalg
import numpy as np
import pickle
import argparse
from datetime import datetime
def circular_interpolation(radius, latents_persistent, latents_interpolate):
latents_a, latents_b, latents_c = latents_persistent
latents_axis_x = (latents_a - latents_b).flatten() / linalg.norm(latents_a - latents_b)
latents_axis_y = (latents_a - latents_c).flatten() / linalg.norm(latents_a - latents_c)
latents_x = math.sin(math.pi * 2.0 * latents_interpolate) * radius
latents_y = math.cos(math.pi * 2.0 * latents_interpolate) * radius
latents = latents_a + latents_x * latents_axis_x + latents_y * latents_axis_y
return latents
def generate_from_generator_adaptive(psi,radius_large,radius_small,step1,step2,video_length,seed,Gs):
# psi = args.psi # 0.7
# radius_large = args.radius_large # 600.0
# radius_small = args.radius_small # 40.0
current_position_increment = step1 # 0.005
current_position_style_increment = step2 # 0.0025
# video_length = args.video_length # 1.0
output_format = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
# latents for the circular interpolation in latent space
if seed:
np.random.RandomState(seed)
rnd = np.random
latents_a = rnd.randn(1, Gs.input_shape[1])
latents_b = rnd.randn(1, Gs.input_shape[1])
latents_c = rnd.randn(1, Gs.input_shape[1])
latents_persistent_small = (latents_a, latents_b, latents_c)
# latents for the circular interpolation of the unrolled constant layer
latent_size = 512 # default StyleGAN latent size
constant_layer_size = 4 # default StyleGAN constant layer size is 4x4
constant_layer_total = latent_size * constant_layer_size * constant_layer_size # 8192
latents_aa = rnd.randn(1, constant_layer_total)
latents_bb = rnd.randn(1, constant_layer_total)
latents_cc = rnd.randn(1, constant_layer_total)
latents_persistent_large = (latents_aa, latents_bb, latents_cc)
# initialize the circular interpolation
current_position = 0.0
current_position_style = 0.0
current_latent = circular_interpolation(radius_small, latents_persistent_small, current_position)
current_image = Gs.run(current_latent, None, truncation_psi=psi, randomize_noise=False, output_transform=output_format)[0]
output_frames = []
# Create the frames while interpolating along the circle, in both the latent space and the constant layer
while(current_position_style < video_length):
current_position += current_position_increment
current_position_style += current_position_style_increment
# interpolate the weights of the constant layer
w = [v for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) if v.name == 'G_synthesis_1/4x4/Const/const:0'][0]
v1 = tf.identity(tflib.run(['G_synthesis_1/4x4/Const/const:0'])[0])
v2 = tf.reshape(v1, [1, constant_layer_total])
v2 += circular_interpolation(radius_large, latents_persistent_large, current_position + np.pi)
v2 = tf.reshape(v2, [1, latent_size, constant_layer_size, constant_layer_size])
tf.get_default_session().run(tf.assign(w, v2))
# interpolate along the latent space
current_latent = circular_interpolation(radius_small, latents_persistent_small, current_position_style)
current_image = images = Gs.run(current_latent, None, truncation_psi=psi, randomize_noise=False, output_transform=output_format)[0]
output_frames.append(current_image)
tf.get_default_session().run(tf.assign(w, v1))
# stops at 1.0 (or whatever value to which video_length is set)
print('Stopping at',video_length,'currently at',current_position_style, flush=True)
return output_frames
def main(pkl,psi,radius_large,radius_small,step1,step2,seed,video_length=1.0):
tflib.init_tf()
print('Loading networks from "%s"...' % pkl)
with dnnlib.util.open_url(pkl) as fp:
_G, _D, Gs = pickle.load(fp)
frames = generate_from_generator_adaptive(psi,radius_large,radius_small,step1,step2,video_length,seed, Gs)
frames = moviepy.editor.ImageSequenceClip(frames, fps=30)
# Generate video at the current date and timestamp
timestamp = datetime.now().strftime("%d-%m-%Y-%I-%M-%S-%p")
mp4_file = './circular-'+timestamp+'.mp4'
mp4_codec = 'libx264'
mp4_bitrate = '15M'
mp4_fps = 24 # 20
frames.write_videofile(mp4_file, fps=mp4_fps, codec=mp4_codec, bitrate=mp4_bitrate)
sess = tf.get_default_session()
sess.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Creates a video of a circular interpolation of the constant layer for an input StyleGAN model.',
formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument('--pkl', help='A .pkl of a StyleGAN network model', required=True)
parser.add_argument('--psi', help='The truncation psi used in the generator', default=0.7, type=float)
parser.add_argument('--radius_large', help='The radius for the constant layer interpolation', default=300.0, type=float)
parser.add_argument('--radius_small', help='The radius for the latent space interpolation', default=40.0, type=float)
parser.add_argument('--step1', help='The value of the step/increment for the constant layer interpolation', default=0.005, type=float)
parser.add_argument('--step2', help='The value of the step/increment for the latent space interpolation', default=0.0025, type=float)
parser.add_argument('--seed', help='Seed value for random', default=None, type=int)
parser.add_argument('--video_length', help='The length of the video in terms of circular interpolation (recommended to keep at 1.0)', default=1.0, type=float)
args = parser.parse_args()
main(args.pkl, args.psi, args.radius_large, args.radius_small, args.step1, args.step2, args.seed, args.video_length)