-
Notifications
You must be signed in to change notification settings - Fork 29
/
mip_solver.py
112 lines (93 loc) · 3.73 KB
/
mip_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# Copyright 2022 D-Wave Systems Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import time
import typing
import dimod
import mip
class MIPCQMSolver:
"""An Ocean wrapper for Python-MIP's solver.
See https://www.python-mip.com/
"""
@staticmethod
def _mip_vartype(vartype: dimod.typing.VartypeLike) -> str:
vartype = dimod.as_vartype(vartype, extended=True)
if vartype is dimod.SPIN:
raise ValueError("MIP cannot handle SPIN variables")
elif vartype is dimod.BINARY:
return "B"
elif vartype is dimod.INTEGER:
return "I"
elif vartype is dimod.REAL:
return "C"
else:
raise ValueError("unexpected vartype")
@staticmethod
def _qm_to_expression(
qm: typing.Union[dimod.QuadraticModel, dimod.BinaryQuadraticModel],
variable_map: typing.Dict[dimod.typing.Variable, mip.Var],
) -> mip.LinExpr:
if not qm.is_linear():
raise ValueError("MIP cannot support quadratic interactions")
return mip.xsum(
itertools.chain((variable_map[v] * bias for v, bias in qm.iter_linear()), (qm.offset,))
)
@classmethod
def sample_cqm(
cls,
cqm: dimod.ConstrainedQuadraticModel,
time_limit: float = float("inf"),
) -> dimod.SampleSet:
"""Use Python-MIP to solve a constrained quadratic model.
Note that Python-MIP requires the objective and constraints to be
linear.
Args:
cqm: A constrained quadratic model.
time_limit: The maximum time in seconds to search.
Returns:
A sample set with any solutions returned by Python-MIP.
Raises:
ValueError: If the given constrained quadratic model contains
any quadratic terms.
"""
model = mip.Model()
variable_map: typing.Dict[dimod.typing.Variable, mip.Var] = dict()
for v in cqm.variables:
variable_map[v] = model.add_var(
name=v,
lb=cqm.lower_bound(v),
ub=cqm.upper_bound(v),
var_type=cls._mip_vartype(cqm.vartype(v)),
)
model.objective = cls._qm_to_expression(cqm.objective, variable_map)
for label, constraint in cqm.constraints.items():
lhs = cls._qm_to_expression(constraint.lhs, variable_map)
rhs = constraint.rhs
if constraint.sense is dimod.sym.Sense.Le:
model.add_constr(lhs <= rhs, name=label)
elif constraint.sense is dimod.sym.Sense.Ge:
model.add_constr(lhs >= rhs, name=label)
elif constraint.sense is dimod.sym.Sense.Eq:
model.add_constr(lhs == rhs, name=label)
else:
raise RuntimeError(f"unexpected sense: {lhs.sense!r}")
t = time.perf_counter()
model.optimize(max_seconds=time_limit)
run_time = time.perf_counter() - t
samples = [
[variable_map[v].xi(k) for v in cqm.variables] for k in range(model.num_solutions)
]
return dimod.SampleSet.from_samples_cqm(
(samples, cqm.variables), cqm, info=dict(run_time=run_time)
)