-
Notifications
You must be signed in to change notification settings - Fork 14
/
change_sampler.py
93 lines (70 loc) · 2.75 KB
/
change_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright 2020 D-Wave Systems Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Import networkx for graph tools
import networkx as nx
# Import dwave_networkx for d-wave graph tools/functions
import dwave_networkx as dnx
# Import matplotlib.pyplot to draw graphs on screen
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
# Set the solver we're going to use
def set_sampler():
'''Returns a simulated annealing sampler'''
## TODO: Import packages and add sampler here
return
def create_graph():
# Create empty graph
G = nx.Graph()
# Add edges to graph - this also adds the nodes
G.add_edges_from([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5),
(4, 5), (4, 6), (5, 6), (6, 7)])
return G
def solve_problem(G, sampler):
'''Returns a solution to the maximum independent set problem on graph G
using the simulated annealing sampler.
Args:
G(networkx.Graph): a graph representing a problem
sampler(dimod.Sampler): sampler used to find solutions
Returns:
A list of nodes
'''
# Find the maximum independent set, S
S = dnx.maximum_independent_set(G, sampler=sampler, num_reads=10)
return S
## ------- Main program -------
if __name__ == "__main__":
G = create_graph()
sampler = set_sampler()
S = solve_problem(G, sampler)
# Print the solution for the user
print('Maximum independent set size found is', len(S))
print(S)
# Visualize the results
subset_1 = G.subgraph(S)
notS = list(set(G.nodes()) - set(S))
subset_0 = G.subgraph(notS)
pos = nx.spring_layout(G)
plt.figure()
# Save original problem graph
original_name = "antenna_plot_original.png"
nx.draw_networkx(G, pos=pos, with_labels=True)
plt.savefig(original_name, bbox_inches='tight')
# Save solution graph
# Note: red nodes are in the set, blue nodes are not
solution_name = "simulated_annealing_solution.png"
nx.draw_networkx(subset_1, pos=pos, with_labels=True, node_color='r', font_color='k')
nx.draw_networkx(subset_0, pos=pos, with_labels=True, node_color='b', font_color='w')
plt.savefig(solution_name, bbox_inches='tight')
print("Your plots are saved to {} and {}".format(original_name, solution_name))