You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thank you for providing this powerful tool! It's a wonderful tool that helps me get vegetation cover change. However, I met some problems with "getSegmentData" function.
After I get the segment information by calling getSegmentData, I tried to extract them like max magnitude as training data for my feature collection using sampleRegions. However, it will always return "FetureCollection error: Computed Image is too large".
I've tried to clip my study area but it doesn't work.
Here is my code:
var ltgee = require('users/emaprlab/public:Modules/LandTrendr.js');
// define parameters
var startYear = 2000;
var endYear = 2019;
var startDay = '06-01';
var endDay = '09-30';
var aoi = ee.Geometry.Point(-67.9527,49.2603);
var index = 'NBR';
var ftvList = ['NBR'];
var runParams = {
maxSegments: 6,
spikeThreshold: 0.9,
vertexCountOvershoot: 3,
preventOneYearRecovery: true,
recoveryThreshold: 0.25,
pvalThreshold: 0.05,
bestModelProportion: 0.75,
minObservationsNeeded: 6
};
var maskThese = ['cloud', 'shadow', 'snow'];
// center and zoom the display in case outputs are to be mapped
Map.centerObject(aoi,10);
Map.addLayer(aoi);
// get Segmentation data
var segInfo = ltgee.getSegmentData(lt, index, 'all');
var segDelta = segInfo.arraySlice(0, 4, 5).toArray(0);
var sortByThis = segDelta.toArray(0).multiply(-1);
var segInfoSorted = segInfo.arraySort(sortByThis);
var bigDelta = segInfoSorted.arraySlice(1,0,1);
var segMax = bigDelta.arraySlice(0,4,5);
var segMax2 = segMax.arrayProject([0]).arrayFlatten([['segMax']]);
// import traning data
var plots_with_class = ee.FeatureCollection('users/xichun_project/point_select_with_class');
print(plots_with_class);
var bands = ['segMax']
var training = segMax2.select(bands).sampleRegions({
collection: plots_with_class,
properties: ['Class'],
scale: 30
});
print(training);
Thank you in advance :)
The text was updated successfully, but these errors were encountered:
Hello,
Thank you for providing this powerful tool! It's a wonderful tool that helps me get vegetation cover change. However, I met some problems with "getSegmentData" function.
After I get the segment information by calling getSegmentData, I tried to extract them like max magnitude as training data for my feature collection using sampleRegions. However, it will always return "FetureCollection error: Computed Image is too large".
I've tried to clip my study area but it doesn't work.
Here is my code:
var ltgee = require('users/emaprlab/public:Modules/LandTrendr.js');
// define parameters
var startYear = 2000;
var endYear = 2019;
var startDay = '06-01';
var endDay = '09-30';
var aoi = ee.Geometry.Point(-67.9527,49.2603);
var index = 'NBR';
var ftvList = ['NBR'];
var runParams = {
maxSegments: 6,
spikeThreshold: 0.9,
vertexCountOvershoot: 3,
preventOneYearRecovery: true,
recoveryThreshold: 0.25,
pvalThreshold: 0.05,
bestModelProportion: 0.75,
minObservationsNeeded: 6
};
var maskThese = ['cloud', 'shadow', 'snow'];
// center and zoom the display in case outputs are to be mapped
Map.centerObject(aoi,10);
Map.addLayer(aoi);
// apply LandTrendr.js functions
var lt = ltgee.runLT(startYear, endYear, startDay, endDay, aoi, index, ftvList, runParams);
// get Segmentation data
var segInfo = ltgee.getSegmentData(lt, index, 'all');
var segDelta = segInfo.arraySlice(0, 4, 5).toArray(0);
var sortByThis = segDelta.toArray(0).multiply(-1);
var segInfoSorted = segInfo.arraySort(sortByThis);
var bigDelta = segInfoSorted.arraySlice(1,0,1);
var segMax = bigDelta.arraySlice(0,4,5);
var segMax2 = segMax.arrayProject([0]).arrayFlatten([['segMax']]);
// import traning data
var plots_with_class = ee.FeatureCollection('users/xichun_project/point_select_with_class');
print(plots_with_class);
var bands = ['segMax']
var training = segMax2.select(bands).sampleRegions({
collection: plots_with_class,
properties: ['Class'],
scale: 30
});
print(training);
Thank you in advance :)
The text was updated successfully, but these errors were encountered: