diff --git a/DESCRIPTION b/DESCRIPTION index c1037d08..f0bab48e 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Type: Package Package: correlation Title: Methods for Correlation Analysis -Version: 0.7.0 +Version: 0.7.1 Authors@R: c(person(given = "Dominique", family = "Makowski", diff --git a/NEWS.md b/NEWS.md index c8a44e3b..fe893e67 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,3 +1,9 @@ +# correlation 0.7.1 + +## Bug Fixes + +- Bug fix in `plot()` methods + # correlation 0.7.0 ## Breaking Changes diff --git a/R/visualisation_recipe.cor_test.R b/R/visualisation_recipe.cor_test.R index c8a46752..3688c4ce 100644 --- a/R/visualisation_recipe.cor_test.R +++ b/R/visualisation_recipe.cor_test.R @@ -70,7 +70,7 @@ visualisation_recipe.easycor_test <- function(x, } # Out - class(layers) <- c("visualisation_recipe", class(layers)) + class(layers) <- c("visualisation_recipe", "see_visualisation_recipe", class(layers)) attr(layers, "data") <- data layers } diff --git a/R/visualisation_recipe.easycormatrix.R b/R/visualisation_recipe.easycormatrix.R index 5e1f7f47..9a0b9380 100644 --- a/R/visualisation_recipe.easycormatrix.R +++ b/R/visualisation_recipe.easycormatrix.R @@ -132,7 +132,7 @@ visualisation_recipe.easycormatrix <- function(x, layers[[paste0("l", l)]] <- .visualisation_easycormatrix_labs(labs) # Out - class(layers) <- c("visualisation_recipe", class(layers)) + class(layers) <- c("visualisation_recipe", "see_visualisation_recipe", class(layers)) attr(layers, "data") <- data layers diff --git a/man/cor_smooth.Rd b/man/cor_smooth.Rd index 1c51033a..fce5481a 100644 --- a/man/cor_smooth.Rd +++ b/man/cor_smooth.Rd @@ -8,9 +8,9 @@ \usage{ cor_smooth(x, method = "psych", verbose = TRUE, ...) -is.positive_definite(x, tol = .Machine$double.eps, ...) +is.positive_definite(x, tol = 10^-12, ...) -is_positive_definite(x, tol = .Machine$double.eps, ...) +is_positive_definite(x, tol = 10^-12, ...) } \arguments{ \item{x}{A correlation matrix.} @@ -21,7 +21,7 @@ is_positive_definite(x, tol = .Machine$double.eps, ...) \item{...}{Other arguments to be passed to or from other functions.} -\item{tol}{The minimum eigen values to be considered as acceptable.} +\item{tol}{The minimum eigenvalue to be considered as acceptable.} } \description{ Make correlations positive definite using \code{psych::cor.smooth}. diff --git a/man/cor_test.Rd b/man/cor_test.Rd index f2fe972c..9396cd82 100644 --- a/man/cor_test.Rd +++ b/man/cor_test.Rd @@ -41,7 +41,8 @@ correlation) or \code{"shepherd"} (for Shepherd's Pi correlation). Setting \code{"auto"} will attempt at selecting the most relevant method (polychoric when ordinal factors involved, tetrachoric when dichotomous factors involved, point-biserial if one dichotomous and one continuous and -pearson otherwise).} +pearson otherwise). See below the \strong{details} section for a desription of +these indices.} \item{ci}{Confidence/Credible Interval level. If \code{"default"}, then it is set to \code{0.95} (\verb{95\%} CI).} @@ -128,7 +129,7 @@ Bishara and Hittner, 2017). \item \strong{Biweight midcorrelation}: A measure of similarity that is median-based, instead of the traditional mean-based, thus being less sensitive to outliers. It can be used as a robust alternative to other -similarity metrics, such as Pearson correlation (Langfelder \& Horvath, +similarity metrics, such as Pearson correlation (Langfelder & Horvath, 2012). \item \strong{Distance correlation}: Distance correlation measures both @@ -147,7 +148,7 @@ distance). \item \strong{Blomqvist’s coefficient}: The Blomqvist’s coefficient (also referred to as Blomqvist's Beta or medial correlation; Blomqvist, 1950) is a median-based non-parametric correlation that has some advantages over -measures such as Spearman's or Kendall's estimates (see Shmid and Schimdt, +measures such as Spearman's or Kendall's estimates (see Shmid & Schimdt, 2006). \item \strong{Hoeffding’s D}: The Hoeffding’s D statistics is a diff --git a/man/cor_to_p.Rd b/man/cor_to_p.Rd index 4df40bef..d9ed0f17 100644 --- a/man/cor_to_p.Rd +++ b/man/cor_to_p.Rd @@ -28,7 +28,8 @@ correlation) or \code{"shepherd"} (for Shepherd's Pi correlation). Setting \code{"auto"} will attempt at selecting the most relevant method (polychoric when ordinal factors involved, tetrachoric when dichotomous factors involved, point-biserial if one dichotomous and one continuous and -pearson otherwise).} +pearson otherwise). See below the \strong{details} section for a desription of +these indices.} \item{correction}{Only used if method is 'spearman' or 'kendall'. Can be 'fieller' (default; Fieller et al., 1957), 'bw' (only for Spearman) or diff --git a/man/correlation.Rd b/man/correlation.Rd index ff12f90d..ed8b5483 100644 --- a/man/correlation.Rd +++ b/man/correlation.Rd @@ -63,7 +63,8 @@ correlation) or \code{"shepherd"} (for Shepherd's Pi correlation). Setting \code{"auto"} will attempt at selecting the most relevant method (polychoric when ordinal factors involved, tetrachoric when dichotomous factors involved, point-biserial if one dichotomous and one continuous and -pearson otherwise).} +pearson otherwise). See below the \strong{details} section for a desription of +these indices.} \item{p_adjust}{Correction method for frequentist correlations. Can be one of \code{"holm"} (default), \code{"hochberg"}, \code{"hommel"}, @@ -181,7 +182,7 @@ Bishara and Hittner, 2017). \item \strong{Biweight midcorrelation}: A measure of similarity that is median-based, instead of the traditional mean-based, thus being less sensitive to outliers. It can be used as a robust alternative to other -similarity metrics, such as Pearson correlation (Langfelder \& Horvath, +similarity metrics, such as Pearson correlation (Langfelder & Horvath, 2012). \item \strong{Distance correlation}: Distance correlation measures both @@ -200,7 +201,7 @@ distance). \item \strong{Blomqvist’s coefficient}: The Blomqvist’s coefficient (also referred to as Blomqvist's Beta or medial correlation; Blomqvist, 1950) is a median-based non-parametric correlation that has some advantages over -measures such as Spearman's or Kendall's estimates (see Shmid and Schimdt, +measures such as Spearman's or Kendall's estimates (see Shmid & Schimdt, 2006). \item \strong{Hoeffding’s D}: The Hoeffding’s D statistics is a