-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_grasping_detection_multiprocessing_refactored.py
374 lines (325 loc) · 15.7 KB
/
run_grasping_detection_multiprocessing_refactored.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#!/usr/bin/env python3
import argparse
import multiprocessing
import torch
import gc
import os
import cv2
import tracemalloc
import time
from i_grip import RgbdCameras as rgbd
from i_grip import Hands3DDetectors as hd
from i_grip import Object2DDetectors as o2d
from i_grip import ObjectPoseEstimators as ope
# from i_grip import Scene_refactored as sc
from i_grip import Scene_refactored_multi as sc
# from i_grip import Scene_ nocopy as sc
from i_grip import Plotters3 as pl
from i_grip.utils import kill_gpu_processes
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def report_gpu():
print(torch.cuda.list_gpu_processes())
gc.collect()
print(torch.cuda.memory_snapshot())
torch.cuda.empty_cache()
def detect_hands_task( cam_data,hands, stop_event, img_depth_pipe, detected_hands_pipe):
hand_detector = hd.Hands3DDetector(cam_data, hands = hands, running_mode =
hd.Hands3DDetector.LIVE_STREAM_MODE)
while True:
t = time.time()
if stop_event.is_set():
break
if img_depth_pipe.poll():
# print('detect_hands_task: got img')
while img_depth_pipe.poll():
input = img_depth_pipe.recv()
my_img = input['img']
my_depth_map = input['depth_map']
else:
# print('detect_hands_task: didnt get img')
input = img_depth_pipe.recv()
# print('finally got img')
my_img = input['img']
my_depth_map = input['depth_map']
# print('detect_hands_task: got img')
# print(my_img)
detected_hands = hand_detector.get_hands(my_img, my_depth_map)
if detected_hands is not None:
# print('detect_hands_task: got hands')
# print(detected_hands)
output = {'hands': detected_hands}
detected_hands_pipe.send(output)
# print('detect_hands_task: sent hands')
# print('detect_hands_task: updated hands')
print(f'detect_hands_task: {(time.time()-t)*1000:.2f} ms')
hand_detector.stop()
def detect_objects_task(cam_data, stop_event, detect_event, img_pipe, detected_objects_pipe):
object_detector = o2d.get_object_detector("ycbv", cam_data)
while True:
t = time.time()
if stop_event.is_set():
break
detect_flag = detect_event.wait(0.5)
if detect_flag:
if img_pipe.poll():
while img_pipe.poll():
# print('detect_objects_task: got img')
my_img = img_pipe.recv()['img']
else:
my_img = img_pipe.recv()['img']
# print('detect_objects_task: got img')
# print(my_img.shape)
detected_objects = object_detector.detect(my_img)
if detected_objects is not None:
# print('detect_objects_task: got objects')
# print(detected_objects)
detected_objects_pipe.send({'detected_objects': detected_objects})
# print('detect_objects_task: sent detected objects')
detect_event.clear()
# print('detect_objects_task: updated objects')
print(f'detect_objects_task: {(time.time()-t)*1000:.2f} ms')
object_detector.stop()
def estimate_objects_task(cam_data, stop_event, img_pipe, object_detections_pipe, estimated_objects_pipe):
object_pose_estimator = ope.get_pose_estimator("ycbv",
cam_data,
use_tracking = True,
fuse_detections=False)
while True:
t = time.time()
if stop_event.is_set():
break
if img_pipe.poll():
while img_pipe.poll():
# print('estimate_objects_task: got img')
my_img = img_pipe.recv()['img']
else:
my_img = img_pipe.recv()['img']
# print('estimate_objects_task: got img')
# print(my_img.shape)
if object_detections_pipe.poll():
while object_detections_pipe.poll():
# print('estimate_objects_task: got detected objects')
my_object_detections = object_detections_pipe.recv()['detected_objects']
else:
my_object_detections = None
# print('estimate_objects_task: got objects')
# print(my_object_detections)
estimated_objects = object_pose_estimator.estimate(my_img, detections = my_object_detections)
# print('estimate_objects_task: got estimated objects')
if estimated_objects is not None:
# print('estimate_objects_task: got estimated objects')
estimated_objects_pipe.send({'estimated_objects': estimated_objects})
# print('estimate_objects_task: sent estimated objects')
# print(estimated_objects)
# print('estimate_objects_task: updated estimated objects')
print(f'estimate_objects_task: {(time.time()-t)*1000:.2f} ms')
object_pose_estimator.stop()
def scene_analysis_task(cam_data, stop_event, detect_event, img_pipe):
plotter = pl.NBPlot()
scene = sc.LiveScene(cam_data, name='Full tracking', plotter=plotter)
j =0
while True:
j+=1
if stop_event.is_set():
break
img = img_pipe.get()
k = cv2.waitKey(1)
scene.render(img)
cv2.imshow('render_img', img)
if k == 32:
print('DETEEEEEEEEEEEEEEEEEECT')
detect_event.set()
if k == 27:
print('end')
stop_event.set()
break
class GraspingDetector:
def __init__(self, ) -> None:
self.dataset = "ycbv"
def run(self):
tracemalloc.start()
multiprocessing.set_start_method('spawn', force=True)
dataset = "ycbv"
rgbd_cam = rgbd.RgbdCamera()
cam_data = rgbd_cam.get_device_data()
hands = ['left']
plotter = pl.NBPlot()
scene = sc.LiveScene(cam_data, name='Full tracking', plotter=plotter)
stop_event = multiprocessing.Event()
detect_event = multiprocessing.Event()
out_rgbd_frame_hands, in_rgbd_frame_hands = multiprocessing.Pipe(duplex=False)
out_rgb_frame_object_detection, in_rgb_frame_object_detection = multiprocessing.Pipe(duplex=False)
out_rgb_frame_object_estimation, in_rgb_frame_object_estimation = multiprocessing.Pipe(duplex=False)
out_hands, in_hands = multiprocessing.Pipe(duplex=False)
out_object_detection, in_object_detection = multiprocessing.Pipe(duplex=False)
out_object_estimation, in_object_estimation = multiprocessing.Pipe(duplex=False)
process_hands_detection = multiprocessing.Process(target=detect_hands_task,
args=(cam_data, hands, stop_event, out_rgbd_frame_hands, in_hands,))
process_object_detection = multiprocessing.Process(target=detect_objects_task,
args=(cam_data, stop_event, detect_event, out_rgb_frame_object_detection, in_object_detection,))
process_object_estimation = multiprocessing.Process(target=estimate_objects_task,
args=(cam_data, stop_event, out_rgb_frame_object_estimation, out_object_detection, in_object_estimation,))
process_hands_detection.start()
process_object_detection.start()
process_object_estimation.start()
rgbd_cam.start()
obj_path = './YCBV_test_pictures/javel.png'
obj_path2 = './YCBV_test_pictures/mustard_front.png'
# obj_path = './YCBV_test_pictures/YCBV.png'
obj_img = cv2.imread(obj_path)
obj_img = cv2.resize(obj_img, (int(obj_img.shape[1]/2), int(obj_img.shape[0]/2)))
obj_img2 = cv2.imread(obj_path2)
obj_img2 = cv2.resize(obj_img2, (int(obj_img2.shape[1]/2), int(obj_img2.shape[0]/2)))
detect_event.set()
while rgbd_cam.is_on():
success, img, depth_map = rgbd_cam.next_frame()
if not success:
continue
# HANDS
img_for_hands = img.copy()
img_for_hands = cv2.cvtColor(img_for_hands, cv2.COLOR_RGB2BGR)
img_for_hands.flags.writeable = False
rgbd_frame = {'img': img_for_hands, 'depth_map': depth_map}
in_rgbd_frame_hands.send(rgbd_frame)
# print(f'updated img for hands')
# # OBJECTS
img[0:obj_img.shape[0], 0:obj_img.shape[1]] = obj_img
img[0:obj_img2.shape[0], img.shape[1]-obj_img2.shape[1]:] = obj_img2
if detect_event.is_set():
img_for_objects = img.copy()
img_for_objects = cv2.cvtColor(img_for_objects, cv2.COLOR_RGB2BGR)
img_for_objects.flags.writeable = False
# print(f'sending img for objects detection')
if not out_rgb_frame_object_detection.poll():
in_rgb_frame_object_detection.send({'img': img_for_objects})
# print(f'updated img for objects detection')
img_for_objects = img.copy()
img_for_objects = cv2.cvtColor(img_for_objects, cv2.COLOR_RGB2BGR)
img_for_objects.flags.writeable = False
if not out_rgb_frame_object_estimation.poll():
in_rgb_frame_object_estimation.send({'img': img_for_objects})
# print(f'updated img for objects estimation')
# SCENE
t = time.time()
detected_hands = None
while out_hands.poll():
detected_hands = out_hands.recv()['hands']
# print(f'got hands')
# print(detected_hands)
if detected_hands is not None:
scene.update_hands(detected_hands)
print(f'scene update hands: {(time.time()-t)*1000:.2f} ms')
# print(f'updated hands')
t = time.time()
estimated_objects = None
# print('waiting for estimated objects')
# print(out_object_estimation.poll())
while out_object_estimation.poll():
estimated_objects = out_object_estimation.recv()['estimated_objects']
# print(f'got estimated objects')
# print(estimated_objects)
# print('finished waiting for estimated objects')
if estimated_objects is not None:
scene.update_objects(estimated_objects)
print(f'scene update objects: {(time.time()-t)*1000:.2f} ms')
# print(f'updated estimated objects')
k = cv2.waitKey(1)
t = time.time()
scene.render(img)
print(f'scene render: {(time.time()-t)*1000:.2f} ms')
cv2.imshow('render_img', img)
if k == 27:
print('end')
break
print('-------------------')
current, peak = tracemalloc.get_traced_memory()
print(f"Current memory usage is {current / 10**6}MB; Peak was {peak / 10**6}MB")
tracemalloc.stop()
stop_event.set()
process_hands_detection.join()
process_object_detection.join()
process_object_estimation.join()
process_hands_detection.terminate()
rgbd_cam.stop()
exit()
def run2(self):
print(self.__dict__)
print('start')
self.hand_detector.start()
start_event = multiprocessing.Event()
detect_event = multiprocessing.Event()
estimate_event = multiprocessing.Event()
self.t_obj_d = multiprocessing.Process(target=self.detect_objects_task, args=(start_event, detect_event,estimate_event,))
self.t_obj_e = multiprocessing.Process(target=self.estimate_objects_task, args=(start_event, estimate_event,))
# self.t_plot = threading.Thread(target=self.plot_task)
# self.t_plot.start()
self.t_obj_d.start()
self.t_obj_e.start()
started = True
obj_path = './YCBV_test_pictures/javel.png'
# obj_path = './YCBV_test_pictures/mustard_front.png'
# obj_path = './YCBV_test_pictures/YCBV.png'
obj_img = cv2.imread(obj_path)
obj_img = cv2.resize(obj_img, (int(obj_img.shape[1]/2), int(obj_img.shape[0]/2)))
while self.hand_detector.isOn():
# pl.plot()
k = cv2.waitKey(2)
success, img = self.hand_detector.next_frame()
if not success:
self.img_for_objects = None
continue
else:
img[0:obj_img.shape[0], 0:obj_img.shape[1]] = obj_img
img_for_hands = img.copy()
# img_for_hands = cv2.resize(img_for_hands, (int(self.hand_detector.resolution[0]/2), int(self.hand_detector.resolution[1]/2)))
img_for_hands = cv2.cvtColor(img_for_hands, cv2.COLOR_RGB2BGR)
img.flags.writeable = False
if estimate_event.is_set() or detect_event.is_set():
self.img_for_objects = img.copy()
# incorporate obj_img in img_for_objects
self.img_for_objects = cv2.cvtColor(self.img_for_objects, cv2.COLOR_RGB2BGR)
self.img_for_objects.flags.writeable = False
if started:
start_event.set()
detect_event.set()
started = False
if not estimate_event.is_set():
estimate_event.set()
hands = self.hand_detector.get_hands(img_for_hands)
# print(f'img_for_hands.shape: {img_for_hands.shape}')
if hands is not None and len(hands)>0:
self.scene.update_hands(hands)
# Avant de commencer à utiliser la mémoire GPU
torch.cuda.empty_cache() # Pour libérer toute mémoire inutilisée
# Utilisez cette ligne pour obtenir la mémoire GPU utilisée en octets
gpu_memory_used = torch.cuda.memory_allocated()
# Utilisez cette ligne pour obtenir la mémoire GPU réservée en octets (y compris la mémoire non allouée)
gpu_memory_reserved = torch.cuda.memory_reserved()
# Convertissez les valeurs en méga-octets (Mo) pour une meilleure lisibilité
gpu_memory_used_mb = gpu_memory_used / 1024 / 1024
gpu_memory_reserved_mb = gpu_memory_reserved / 1024 / 1024
# print(f"GPU Memory Used: {gpu_memory_used_mb:.2f} MB")
# print(f"GPU Memory Reserved: {gpu_memory_reserved_mb:.2f} MB")
if k == 32:
print('DETEEEEEEEEEEEEEEEEEECT')
detect_event.set()
self.scene.render(img)
cv2.imshow('render_img', img)
if k == 27:
print('end')
self.stop()
break
exit()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-hd', '--hand_detection', choices=['mediapipe', 'depthai', 'hybridOAKMediapipe'],
default = 'hybridOAKMediapipe', help="Hand pose reconstruction solution")
parser.add_argument('-od', '--object_detection', choices=['cosypose, megapose'],
default = 'cosypose', help="Object pose reconstruction detection")
args = vars(parser.parse_args())
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
print('start')
report_gpu()
kill_gpu_processes()
i_grip = GraspingDetector()
i_grip.run()