-
Notifications
You must be signed in to change notification settings - Fork 324
/
plot_distribution.py
164 lines (127 loc) · 5.01 KB
/
plot_distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import pickle
import numpy
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.cm as cm
from scipy.stats.mstats import normaltest
from scipy.optimize import curve_fit
from sklearn import manifold
import matplotlib
import math
import itertools
font = {'family': 'normal',
'weight': 'bold',
'size': 18}
matplotlib.rc('font', **font)
def gaus(x, a, x0, sigma):
return a*np.exp(-(x-x0)**2/(2*sigma**2))
def plot_sales_along_axes(X_embedded, X, y, axes):
y_projected = []
for axis in axes:
nr_categories = 1
colors = cm.rainbow(np.linspace(0, 1, nr_categories))
for category_index, c in zip(range(nr_categories), colors):
x_projected = []
y_projected = []
for record_embedded, record, sales in zip(X_embedded, X, y):
if record[2] == 2 and record[3] == 0 and record[4] == 0 and record[5] == 10:
projected = np.dot(axis, record_embedded)
x_projected.append(projected)
y_projected.append(sales)
plt.scatter(x_projected, y_projected)
plt.show()
def plot_distribution_along_axis(X_embedded, X, axes):
for axis in axes:
nr_categories = 1
colors = cm.rainbow(np.linspace(0, 1, nr_categories))
for category_index, c in zip(range(nr_categories), colors):
x_projected = []
for record_embedded, record in zip(X_embedded, X):
if True:
projected = np.dot(axis, record_embedded)
x_projected.append(projected)
hist, bins = np.histogram(x_projected, bins=50)
width = 0.7 * (bins[1] - bins[0])
center = (bins[:-1] + bins[1:]) / 2
plt.bar(center, hist, align='center', width=width)
popt, pcov = curve_fit(gaus, center, hist, p0=[1.0, 0.0, 1.0])
plt.plot(center, gaus(center, *popt), color='red', linewidth=2)
print(normaltest(x_projected))
plt.show()
# same notation as in: https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Multivariate_normality_tests
def mardia_test(sample):
(n, k) = sample.shape
x_bar = np.mean(sample, axis=0)
sigma = np.cov(sample.T)
sigma_inv = np.linalg.inv(sigma)
A = 0.0
for i, j in itertools.product(range(n), range(n)):
x_i = sample[i, :]
x_j = sample[j, :]
A += (np.dot((x_i - x_bar).T, np.dot(sigma_inv, (x_j - x_bar))))**3
A /= (6*n)
B = 0.0
for i in range(n):
x_i = sample[i, :]
B += (np.dot((x_i - x_bar).T, np.dot(sigma_inv, (x_i - x_bar))))**2
B /= n
B -= k*(k + 2)
B *= math.sqrt(n/(8*k*(k + 2)))
print("A", A)
print("B", B)
return (A, B)
def plot_surface_slice(X_embedded, X, axis1, axis2):
x1_projected = []
x2_projected = []
for record_embedded, record in zip(X_embedded, X):
# if record[1] == 0 and record[4] == 0:
if record[2] == 2 and record[3] == 0 and record[4] == 0 and record[5] == 10:
x1_projected.append(np.dot(record_embedded, axis1))
x2_projected.append(np.dot(record_embedded, axis2))
# print(np.unique(x1_projected))
plt.scatter(x1_projected, x2_projected)
plt.show()
def plot_tsne_embedding(X_embedded, X):
x_store = X_embedded # X_embedded[X[:, 1] == 0]
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
Y = tsne.fit_transform(x_store)
plt.scatter(Y[:, 0], Y[:, 1])
plt.show()
def embedd_features(X, feature_index):
# f_embeddings = open("embeddings.pickle", "rb")
f_embeddings = open("embeddings_shuffled.pickle", "rb")
embeddings = pickle.load(f_embeddings)
index_embedding_mapping = {1: 0, 2: 1, 4: 2, 5: 3, 6: 4, 7: 5}
embedding_index = index_embedding_mapping[feature_index]
X_embedded = []
(num_records, num_features) = X.shape
for record in X:
feat = int(record[feature_index])
embedded_features = embeddings[embedding_index][feat].tolist()
X_embedded.append(embedded_features)
return numpy.array(X_embedded)
f = open('feature_train_data.pickle', 'rb')
(X, y) = pickle.load(f)
X_store_index = numpy.zeros((1115, 8))
for i in range(1115):
X_store_index[i, 1] = i
X_dow_index = numpy.zeros((7, 8))
for i in range(7):
X_dow_index[i, 2] = i
X_embedded_store = embedd_features(X_store_index, 1)
print(X_embedded_store)
print(X_embedded_store.shape)
mardia_test(X_embedded_store)
pca = PCA(n_components=6)
X_pca = pca.fit_transform(X_embedded_store)
print("principal components...")
print(pca.components_)
print("-"*40)
print(pca.explained_variance_ratio_)
mardia_test(X_pca[:, 0:2])
plot_sales_along_axes(X_embedded_store, X, y, pca.components_[0:2])
plot_distribution_along_axis(X_embedded_store, X, pca.components_[0:4])
random_direction = np.random.rand(X_embedded_store.shape[1])
random_direction = random_direction / (np.dot(random_direction, random_direction))**0.5
plot_sales_along_axes(X_embedded_store, X, y, [random_direction])