diff --git a/README.md b/README.md
index bdb38f0..ade12b2 100644
--- a/README.md
+++ b/README.md
@@ -3,56 +3,80 @@
![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)
[![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
-## πLatest News
+## π Latest News
+
+- **[Gemma-2 Support](https://github.com/epfl-dlab/transformers-CFG/pull/75)** β Thanks to @fillassuncao (2024-08-16)
+- **[DeepSeek Support](https://github.com/epfl-dlab/transformers-CFG/pull/73)** (2024-07-24)
+- **LLAMA-3 Support** (2024-07-08)
+- **[JSON Schema as Constraint Support](examples%2Fgrammars%2Fcustom_json_grammars%2FREADME.md)** (2024-05-13)
+- **[Token Masking Optimization](#efficiency)** (2024-04-25)
+- **[Phi Support](https://github.com/epfl-dlab/transformers-CFG/issues/34)** (2024-04-16)
+- **[Online Demo with JSON Grammar](http://saibo-creator.xyz:7860/) at HF Space** (2024-04-10)
+- **Unicode (Multilingual) Grammar Support** (2024-02-29)
+- **Integration with Text-Generation-WebUI** (2023-12-17)
-- **Support for [Gemma-2](https://github.com/epfl-dlab/transformers-CFG/pull/75) Thanks to @fillassuncao** (2024-08-16)
+We are thrilled to announce that `transformers-cfg` has been integrated into the [Text-Generation-WebUI](https://github.com/oobabooga/text-generation-webui) project, enabling users to utilize our CFG capabilities within this popular web interface for text generation. For more details, see the [relevant pull request](https://github.com/oobabooga/text-generation-webui/pull/4953).
-- **Support for [DeepSeek](https://github.com/epfl-dlab/transformers-CFG/pull/73)** (2024-07-24)
+## π Introduction
-- **Support for LLAMA-3** (2024-07-08)
+`transformers-cfg` is an extension library for the popular Transformers library by Hugging Face, tailored for working with context-free grammars (CFG). This package provides additional tools and functionalities to enhance your experience with natural language processing tasks involving CFGs.
-- **support [JSON Schema as constraint](examples%2Fgrammars%2Fcustom_json_grammars%2FREADME.md)**(2024-05-13)
+Initially developed as a pull request to the [Hugging Face Transformers](https://github.com/huggingface/transformers) library, you can find the relevant discussion [here](https://github.com/huggingface/transformers/pull/27557).
-- **[Token masking optimization](#efficiency)(** (2024-04-25)
+## π» Installation
-- **[Support for Phi](https://github.com/epfl-dlab/transformers-CFG/issues/34)** (2024-04-16)
+- **Stable Version:**
-- **Online [Demo with JSON Grammar](http://saibo-creator.xyz:7860/) at HF space** (2024-04-10)
+ Install the stable version of `transformers-cfg` using pip:
-- **Support for Unicode(multilingual) grammars** (2024-02-29)
+ ```bash
+ pip install transformers-cfg
+ ```
-- **Integration with Text-Generation-WebUI** (2023-12-17)
+- **Development Version:**
-We are thrilled to announce that `transformers_cfg` has been used in the [Text-Generation-WebUI](https://github.com/oobabooga/text-generation-webui) project.
-This integration enables users to utilize our CFG capabilities within the popular, 30.5K-starred web interface for text generation.
-For more details, see [Relevent Pull Request](https://github.com/oobabooga/text-generation-webui/pull/4953)
+ For the latest code and updates, install directly from the GitHub repository:
+ ```bash
+ pip install git+https://github.com/epfl-dlab/transformers-CFG.git@main
+ ```
-## πIntroduction
-`transformers_cfg` is an extension library for the popular Transformers library by Hugging Face, tailored for working with context-free grammars (CFG).
-This package provides additional tools and functionalities to enhance your experience with natural language processing tasks involving CFGs.
+ This installs the package from the `main` branch.
-It was initially developed as a pull request to the [Hugging Face Transformers](https://github.com/huggingface/transformers) library.
-See relevant discussion [here](https://github.com/huggingface/transformers/pull/27557).
+## π§ Quick Start: Force LLM to Generate a Valid JSON Object
-## π» Installation
+### Command-Line Interface
-- You can install the stable version of `transformers-cfg` using pip:
+`transformers-cfg-cli` is a command-line tool that allows you to generate text using a model and a grammar. You can specify the model, grammar, prompts, and other parameters to generate text that conforms to the specified grammar.
```bash
-pip install transformers-cfg
+transformers-cfg-cli generate \
+ -m "microsoft/Phi-3-mini-4k-instruct" \
+ -g "examples/grammars/json.ebnf" \
+ -p "This is a valid json string for http request:" \
+ --use_4bit \
+ --max_new_tokens 60 \
+ --repetition_penalty 1.1
+# {"name":"John","age":30,"car":null}
```
-- For the latest code and updates, you can install directly from the GitHub repository:
+We support also Unicode characters in the grammar:
+```bash
+transformers-cfg-cli generate \
+ -m "microsoft/Phi-3-mini-4k-instruct" \
+ -g "examples/grammars/chinese.ebnf" \
+ -p "Translate the following sentence into Chinese: My neighbor is a very nice person. -> " \
+ --use_4bit \
+ --max_new_tokens 60 \
+ --repetition_penalty 1.1
```
-pip install git+https://github.com/epfl-dlab/transformers-CFG.git@main
-```
-This will install the package directly from the `main` branch of the repository.
-## π§QuickStart: Force LLM to generate a valid json object
+`transformers-cfg-cli generate --help` provides a list of available options and arguments.
+
-The below example can be found in `examples/generate_json.py`
+
+Click here to see an example of generating a JSON object with minimal changes to HF code, or check it out in examples/generate_json.py
```python
import torch
@@ -71,21 +95,18 @@ if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
- model = AutoModelForCausalLM.from_pretrained(model_id).to(
- device
- ) # Load model to defined device
+ model = AutoModelForCausalLM.from_pretrained(model_id).to(device)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
- # Load json grammar
+ # Load JSON grammar
with open("examples/grammars/json.ebnf", "r") as file:
grammar_str = file.read()
grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer)
grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
# Generate
- prefix1 = "This is a valid json string for http request:"
- prefix2 = "This is a valid json string for shopping cart:"
- input_ids = tokenizer([prefix1, prefix2], add_special_tokens=False, return_tensors="pt", padding=True)["input_ids"]
+ prompts = ["This is a valid json string for http request:", "This is a valid json string for shopping cart:"]
+ input_ids = tokenizer(prompts, add_special_tokens=False, return_tensors="pt", padding=True)["input_ids"]
output = model.generate(
input_ids,
@@ -94,32 +115,34 @@ if __name__ == "__main__":
repetition_penalty=1.1,
num_return_sequences=1,
)
- # decode output
+ # Decode output
generations = tokenizer.batch_decode(output, skip_special_tokens=True)
print(generations)
"""
- 'This is a valid json string for http request:{ "request": { "method": "GET", "headers": [], "content": "Content","type": "application" }}
- 'This is a valid json string for shopping cart:{ "name": "MyCart", "price": 0, "value": 1 }
+ 'This is a valid json string for http request:{ "request": { "method": "GET", "headers": [], "content": "Content","type": "application" }}'
+ 'This is a valid json string for shopping cart:{ "name": "MyCart", "price": 0, "value": 1 }'
"""
```
-Alternatively, you can use `transformers-cfg` to perform grammar-constrained decoding with huggingface pipeline.
+
-Click here to see an example, or check it out in `examples/pipeline_json.py`
+Click here to see an example with HF pipeline API, or check it out in examples/pipeline_json.py
```python
+from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
+from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
+from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
+
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
-# Load model to defined device
model = AutoModelForCausalLM.from_pretrained(model_id).to(device)
# Load grammar
with open(f"examples/grammars/json.ebnf", "r") as file:
grammar_str = file.read()
-
grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer)
grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
@@ -142,21 +165,23 @@ generations = pipe(
logits_processor=[grammar_processor],
)
```
-
+
-## π‘Why should I use transformers-CFG?
+## π‘ Why Should I Use `transformers-cfg`?
-- We support EBNF grammar description format
-- We offer the same grammar interface as llama-cpp project, allowing you to drop-in replace llama-cpp with transformers-CFG.
-- We allow you to use any of the models in the π€ Transformers library, including the ones that are not supported by llama-cpp.
-- We support multilingual grammars, you can use any character from any language in your grammar, e.g. δΈζ, ζ₯ζ¬θͺ, νκ΅μ΄, ΰ€Ήΰ€Ώΰ€¨ΰ₯ΰ€¦ΰ₯, Ψ§ΩΨΉΨ±Ψ¨ΩΨ©, Χ’ΧΧ¨ΧΧͺ, or emoji π€.
+- **EBNF Grammar Support:** We support the Extended Backus-Naur Form (EBNF) for grammar description.
+- **Seamless Integration:** Our grammar interface is compatible with the llama-cpp project, allowing you to replace llama-cpp with `transformers-cfg` easily.
+- **Model Compatibility:** Use any model from the π€ Transformers library, including those not supported by llama-cpp.
+- **Multilingual Grammar Support:** We support grammars in multiple languages, allowing you to use characters from various languages, including δΈζ, ζ₯ζ¬θͺ, νκ΅μ΄, ΰ€Ήΰ€Ώΰ€¨ΰ₯ΰ€¦ΰ₯, Ψ§ΩΨΉΨ±Ψ¨ΩΨ©, Χ’ΧΧ¨ΧΧͺ, and emoji π€.
-## π€What is grammar ?
+## π€ What Is a Grammar?
TL;DR: Think of it as an enhanced version of regular expressions.
-Here is an example of a simplified JSON grammar:
+
+Here is a simple example of a JSON grammar:
+
```bnf
# A JSON object is the root of the grammar
root ::= object
@@ -174,65 +199,56 @@ string ::= '"' [a-zA-Z0-9]* '"'
value ::= string | object | "true" | "false" | "null"
```
-This grammar describes the structure of a JSON object. It specifies that a JSON object is a pair of key-value pairs, where the key is a string and the value can be a string, another object, or a boolean value.
+This grammar describes the structure of a JSON object. It specifies that a JSON object consists of key-value pairs, where the key is a string, and the value can be a string, another object, or a boolean value.
+
+You can use grammars to describe simple but useful constructs, such as valid email addresses, URLs, or phone numbers:
-Grammar doesn't need to be complicated.
-You can use it to describe very simple but useful things, like a valid email address, a valid URL, or phone number.
```
phone_number ::= "+" [0-9]+
```
-You can also force it to [generate only emojis](examples/generate_emoji.py) or [generate only korean characters](examples/generate_korean.py).
-```
-['Describe your feeling with emoji: ππππ―π
ππππππππ
πππππππππππ
ππππππππππ', 'Write a poem with emoji: πππππππππππ
πππππππππππππππππππππππ']
-```
+
-More details can be found in this [doc from llama-cpp](https://github.com/ggerganov/llama.cpp/tree/master/grammars)
-Advanced grammar debugging guide can be found [here](docs/debugging_custom_grammars.md)
+For advanced grammar debugging, check out our [debugging guide](docs/debugging_custom_grammars.md).
-### Automatic Grammar Generation
+## Automatic JSON Schema Grammar Conversion[Experimental]
-You can use custom grammars to constrain the output of a language model.
-Check out the [documentation](examples%2Fgrammars%2Fcustom_json_grammars%2FREADME.md) on json schema to grammar conversion to learn how to automatically create custom grammars for complex json objects.
+Learn how to automatically create custom grammars for complex JSON objects in our [documentation](examples%2Fgrammars%2Fcustom_json_grammars%2FREADME.md) on JSON schema to grammar conversion.
-### Grammar Collection
+## Grammar Collection
-We provide a collection of grammars in the `examples/grammars` folder, which are mostly identical to the grammars in llama-cpp project.
-We try to keep the grammars up-to-date with the original grammars from llama-cpp project.
-But up to now, we can not yet guarantee that all grammars from llama-cpp project can be directly used in transformers-CFG.
+We provide a collection of grammars in the `examples/grammars` folder, which are mostly identical to the grammars in the llama-cpp project. We try to keep these grammars up-to-date with the original project, though we cannot yet guarantee that all grammars from llama-cpp can be directly used in `transformers-cfg`.
-The list of grammars contains:
-- [json.ebnf](examples%2Fgrammars%2Fjson.ebnf): A grammar for generating valid json objects.
-- [json_arr.ebnf](examples%2Fgrammars%2Fjson_arr.ebnf): A grammar for generating valid json arrays.
-- [c.ebnf](examples%2Fgrammars%2Fc.ebnf): A grammar for generating valid C programs.
-- [chess.ebnf](examples%2Fgrammars%2Fchess.ebnf): A grammar for generating valid chess moves.
-- [arithmetic.ebnf](examples%2Fgrammars%2Farithmetic.ebnf): A grammar for generating valid arithmetic expressions.
+Available grammars include:
+- [json.ebnf](examples%2Fgrammars%2Fjson.ebnf): For generating valid JSON objects.
+- [json_arr.ebnf](examples%2Fgrammars%2Fjson_arr.ebnf): For generating valid JSON arrays.
+- [c.ebnf](examples%2Fgrammars%2Fc.ebnf): For generating valid C programs.
+- [chess.ebnf](examples%2Fgrammars%2Fchess.ebnf): For generating valid chess moves.
+- [arithmetic.ebnf](examples%2Fgrammars%2Farithmetic.ebnf): For generating valid arithmetic expressions.
## Supported Models
-- [LLaMa family models](https://huggingface.co/baffo32/decapoda-research-llama-7B-hf)
-- [GPT family models](https://huggingface.co/openai-community/gpt2)
-- [Bloom family models](https://huggingface.co/bigscience/bloom)
-- [Mistral family models](https://huggingface.co/mistralai/Mistral-7B-v0.1)
-- [Falcon family models](https://huggingface.co/tiiuae/falcon-7b)
+- [LLaMa Family Models](https://huggingface.co/baffo32/decapoda-research-llama-7B-hf)
+- [GPT Family Models](https://huggingface.co/openai-community/gpt2)
+- [Bloom Family Models](https://huggingface.co/bigscience/bloom)
+- [Mistral Family Models](https://huggingface.co/mistralai/Mistral-7B-v0.1)
+- [Falcon Family Models](https://huggingface.co/tiiuae/falcon-7b)
- ...
See [supported_models.yaml](docs%2Fsupported_models.yaml) for the full list of supported models.
-As a rule of thumb, all models with the same tokenizer should naturally be supported.
-If you find any model that is not supported, please open an issue or submit a pull request.
+As a rule of thumb, all models with the same tokenizer should be naturally supported.
-## Efficiency
-Our update in the `transformers_cfg` library has significantly improved the performance of grammar-constrained decoding (especially for complicated grammars).
+If you find any model that is not supported, please open an issue or submit a pull request.
-
## Citation
-**Please consider citing our work, if you found the provided resources useful.**
-```
+**Please consider citing our work if you find the provided resources useful:**
+
+```bibtex
@inproceedings{geng-etal-2023-grammar,
title = {Grammar-Constrained Decoding for Structured {NLP} Tasks without Finetuning},
author = {Geng, Saibo and Josifoski, Martin and Peyrard, Maxime and West, Robert},
@@ -246,10 +262,10 @@ Our update in the `transformers_cfg` library has significantly improved the perf
}
```
-
## License
+
This project is licensed under the [MIT License](LICENSE).
-## Acknowledgement
+## Acknowledgements
-This project is derived from the [torch-grammars](https://github.com/Shopify/torch-grammar) project, which was derived from the [llama-cpp](https://github.com/ggerganov/llama.cpp) project.
+This project is derived from the [torch-grammars](https://github.com/Shopify/torch-grammar) project, which was itself derived from the [llama-cpp](https://github.com/ggerganov/llama.cpp) project.
diff --git a/examples/demo.sh b/examples/demo.sh
new file mode 100644
index 0000000..266d31c
--- /dev/null
+++ b/examples/demo.sh
@@ -0,0 +1,117 @@
+
+################
+#
+# JSON generation: object and array
+#
+################
+
+# generate json object
+transformers-cfg-cli generate \
+ -m "microsoft/Phi-3-mini-4k-instruct" \
+ -g "examples/grammars/json.ebnf" \
+ -p "This is a valid json string for http request:" \
+ --use_4bit \
+ --max_new_tokens 60 \
+ --repetition_penalty 1.1
+
+# generate json array
+
+transformers-cfg-cli generate \
+ -m "microsoft/Phi-3-mini-4k-instruct" \
+ -g "examples/grammars/json_arr.ebnf" \
+ -p "Put my shopping list into a json array:" \
+ --use_4bit \
+ --max_new_tokens 60 \
+ --repetition_penalty 1.1
+
+################
+#
+# Code generation: Python, C
+#
+################
+
+# generate C code
+transformers-cfg-cli generate \
+ -m "microsoft/Phi-3-mini-4k-instruct" \
+ -g "examples/grammars/c.ebnf" \
+ -p "#include \n" \
+ --use_4bit \
+ --max_new_tokens 20 \
+ --repetition_penalty 3.0
+
+################
+#
+# NLP tasks: relation extraction
+#
+################
+
+# generate relation extraction triples
+transformers-cfg-cli generate \
+ -m "microsoft/Phi-3-mini-4k-instruct" \
+ -g "examples/grammars/cIE.ebnf" \
+ -p "Extract relations from the following sentence: RenΓ© Descartes was a French philosopher, scientist, and mathematician" \
+ --use_8bit \
+ --max_new_tokens 60 \
+ --repetition_penalty 1.1
+
+
+################
+#
+# Semantic parsing: CalFlow, GeoQuery, overnight, etc.
+#
+################
+
+transformers-cfg-cli generate \
+ -m "microsoft/Phi-3-mini-4k-instruct" \
+ -g "examples/grammars/calflow.ebnf" \
+ -p 'Generate 3 CalFlow strings: 1.(Yield (toRecipient (CurrentUser))) 2.(Yield (CreateCommitEventWrapper (CreatePreflightEventWrapper (Event.subject_? (?= "choose the meeting"))))) 3.' \
+ --use_4bit \
+ --max_new_tokens 60 \
+ --repetition_penalty 1.1
+
+transformers-cfg-cli generate \
+ -m "microsoft/Phi-3-mini-4k-instruct" \
+ -g "examples/grammars/geo_query.ebnf" \
+ -p "Translate the following sentence into GeoQuery: What is the population of the largest city in California?" \
+ --use_4bit \
+ --max_new_tokens 60 \
+ --repetition_penalty 1.1
+
+transformers-cfg-cli generate \
+ -m "microsoft/Phi-3-mini-4k-instruct" \
+ -g "examples/grammars/overnight.ebnf" \
+ -p """Translate natural language to DSL:
+ Q: which brick is no wider than 3 inches
+ A: listValue (filter (getProperty (singleton en.block) !type) (ensureNumericProperty width) <= (ensureNumericEntity 3 en.inch)))
+ Q: which block is above block 1
+ A: (listValue (filter (filter (getProperty (singleton en.block) !type) (reverse above) = en.block.block1) above = en.block.block1))
+ Q: what block is longer than 3 inches
+ A: """ \
+ --use_4bit \
+ --max_new_tokens 60 \
+ --repetition_penalty 1.1
+
+
+
+################
+#
+# Unicode support, Chinese, Emoji, etc.
+#
+################
+
+transformers-cfg-cli generate \
+ -m "microsoft/Phi-3-mini-4k-instruct" \
+ -g "examples/grammars/chinese.ebnf" \
+ -p "Translate the following sentence into Chinese: My neighbor is a very nice person. -> " \
+ --use_4bit \
+ --max_new_tokens 60 \
+ --repetition_penalty 1.1
+
+
+transformers-cfg-cli generate \
+ -m "microsoft/Phi-3-mini-4k-instruct" \
+ -g "examples/grammars/emoji.ebnf" \
+ -p "Translate the following sentence into emoji: I am very happy today. -> " \
+ --use_4bit \
+ --max_new_tokens 60 \
+ --repetition_penalty 1.1
diff --git a/examples/generate.py b/examples/generate.py
deleted file mode 100644
index 6fddaeb..0000000
--- a/examples/generate.py
+++ /dev/null
@@ -1,73 +0,0 @@
-import argparse
-from transformers import AutoModelForCausalLM, AutoTokenizer
-from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
-from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
-import logging
-
-logging.basicConfig(level=logging.DEBUG)
-
-
-def main(args):
-
- # Load model and tokenizer
- tokenizer = AutoTokenizer.from_pretrained(args.model_id)
- tokenizer.pad_token = tokenizer.eos_token
- model = AutoModelForCausalLM.from_pretrained(args.model_id)
-
- # Load grammar
- with open(args.grammar_file_path, "r") as file:
- grammar_str = file.read()
- grammar = IncrementalGrammarConstraint(
- grammar_str, "root", tokenizer, unicode=False
- )
- grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
-
- # Generate
- prefix = args.prefix_prompt
- input_ids = tokenizer(
- prefix, add_special_tokens=False, return_tensors="pt", padding=True
- )["input_ids"]
-
- output = model.generate(
- input_ids,
- do_sample=False,
- max_new_tokens=20,
- logits_processor=[grammar_processor],
- repetition_penalty=1.1,
- num_return_sequences=1,
- )
- # decode output
- generations = tokenizer.batch_decode(output, skip_special_tokens=True)
-
- print(generations)
-
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser(
- description="Generate text with grammar constraints."
- )
- parser.add_argument(
- "-m",
- "--model_id",
- type=str,
- required=True,
- help="Model identifier for loading the tokenizer and model",
- default="gpt2",
- )
- parser.add_argument(
- "-g",
- "--grammar_file_path",
- type=str,
- required=True,
- help="Path to the grammar file (supports both relative and absolute paths)",
- )
- parser.add_argument(
- "-p",
- "--prefix_prompt",
- type=str,
- required=True,
- help="Prefix prompt for generation",
- )
-
- args = parser.parse_args()
- main(args)
diff --git a/examples/generate_arabic.py b/examples/generate_arabic.py
deleted file mode 100644
index 6f89096..0000000
--- a/examples/generate_arabic.py
+++ /dev/null
@@ -1,45 +0,0 @@
-from transformers import AutoModelForCausalLM, AutoTokenizer
-from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
-from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
-
-import logging
-
-logging.basicConfig(level=logging.DEBUG)
-
-
-def main():
-
- # Load model and tokenizer
- tokenizer = AutoTokenizer.from_pretrained("gpt2") # JackFram/llama-68m"
- tokenizer.pad_token = tokenizer.eos_token
- model = AutoModelForCausalLM.from_pretrained("gpt2") # Load model to defined device
-
- # Load grammar
- with open("examples/grammars/arabic.ebnf", "r") as file:
- grammar_str = file.read()
- grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer, unicode=True)
- grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
-
- # Generate
- prefix1 = "English: coffee, Arabic: "
- prefix2 = "English: dog, Arabic: "
- input_ids = tokenizer(
- [prefix1, prefix2], add_special_tokens=False, return_tensors="pt", padding=True
- )["input_ids"]
-
- output = model.generate(
- input_ids,
- do_sample=False,
- max_new_tokens=20,
- logits_processor=[grammar_processor],
- repetition_penalty=1.1,
- num_return_sequences=1,
- )
- # decode output
- generations = tokenizer.batch_decode(output, skip_special_tokens=True)
-
- print(generations)
-
-
-if __name__ == "__main__":
- main()
diff --git a/examples/generate_cIE.py b/examples/generate_cIE.py
deleted file mode 100644
index ef10255..0000000
--- a/examples/generate_cIE.py
+++ /dev/null
@@ -1,50 +0,0 @@
-import torch
-from transformers import AutoModelForCausalLM, AutoTokenizer
-from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
-from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
-
-
-if __name__ == "__main__":
-
- # Detect if GPU is available, otherwise use CPU
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- print(f"Using device: {device}")
-
- # Load model and tokenizer
- tokenizer = AutoTokenizer.from_pretrained("gpt2")
- tokenizer.pad_token = tokenizer.eos_token
- model = AutoModelForCausalLM.from_pretrained("gpt2").to(
- device
- ) # Load model to defined device
-
- # Load grammar
- with open("examples/grammars/cIE.ebnf", "r") as file:
- grammar_str = file.read()
- grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer)
- grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
-
- # Generate
- prefix1 = "This is a valid json string for http request:"
- prefix2 = "This is a valid json string for shopping cart:"
- input_ids = tokenizer(
- [prefix1, prefix2], add_special_tokens=False, return_tensors="pt", padding=True
- )["input_ids"].to(
- device
- ) # Move input_ids to the same device as model
-
- output = model.generate(
- input_ids,
- do_sample=False,
- max_new_tokens=60,
- logits_processor=[grammar_processor],
- repetition_penalty=1.1,
- num_return_sequences=1,
- )
- # decode output
- generations = tokenizer.batch_decode(output, skip_special_tokens=True)
- print(generations)
-
- """
- 'This is a valid json string for http request:{ "request": { "method": "GET", "headers": [], "content": "Content","type": "application" }}
- 'This is a valid json string for shopping cart:This is a valid json string for shopping cart:{ "name": "MyCart", "price": 0, "value": 1 }
- """
diff --git a/examples/generate_c_code.py b/examples/generate_c_code.py
deleted file mode 100644
index 30b7b16..0000000
--- a/examples/generate_c_code.py
+++ /dev/null
@@ -1,58 +0,0 @@
-import torch
-from transformers import AutoModelForCausalLM, AutoTokenizer
-from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
-from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
-
-############################################################
-#
-# use llama to generate C code
-#
-############################################################
-
-
-def main():
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- print(f"Using device: {device}")
-
- model_id = "mistralai/Mistral-7B-v0.1"
-
- # Load model and tokenizer
- tokenizer = AutoTokenizer.from_pretrained(model_id)
- tokenizer.pad_token = tokenizer.eos_token
-
- model = AutoModelForCausalLM.from_pretrained(model_id).to(
- device
- ) # Load model to defined device
- model.generation_config.pad_token_id = model.generation_config.eos_token_id
- # Load grammar
- with open("examples/grammars/c.ebnf", "r") as file:
- grammar_str = file.read()
- grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer)
- grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
- # Generate
- prefix1 = "#include \n"
- input_ids = tokenizer(
- [prefix1], add_special_tokens=False, return_tensors="pt", padding=True
- )["input_ids"].to(
- device
- ) # Move input_ids to the same device as model
- output = model.generate(
- input_ids,
- do_sample=False,
- max_new_tokens=20,
- logits_processor=[grammar_processor],
- repetition_penalty=3.0,
- num_return_sequences=1,
- )
- # decode output
- generations = tokenizer.batch_decode(output, skip_special_tokens=True)
- print(generations)
-
- """
- #include
- int thresh_f(int n){return (1-threshold);}
- """
-
-
-if __name__ == "__main__":
- main()
diff --git a/examples/generate_calflow.py b/examples/generate_calflow.py
deleted file mode 100644
index edf18e2..0000000
--- a/examples/generate_calflow.py
+++ /dev/null
@@ -1,111 +0,0 @@
-import torch
-import argparse
-from transformers import AutoModelForCausalLM, AutoTokenizer
-from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
-from transformers_cfg.recognizer import StringRecognizer
-from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
-from transformers_cfg.parser import parse_ebnf
-
-
-def parse_args():
- parser = argparse.ArgumentParser(description="Generate calflow strings")
- parser.add_argument(
- "--model-id",
- type=str,
- default="/dlabdata1/llm_hub/Mistral-7B-v0.1",
- help="Model ID",
- )
- parser.add_argument("--device", type=str, help="Device to put the model on")
- return parser.parse_args()
-
-
-def main():
- args = parse_args()
- model_id = args.model_id
-
- # Detect if GPU is available, otherwise use CPU
- device = torch.device(
- args.device or ("cuda" if torch.cuda.is_available() else "cpu")
- )
- print(f"Using device: {device}")
-
- # Load model and tokenizer
- tokenizer = AutoTokenizer.from_pretrained(model_id)
- tokenizer.pad_token = tokenizer.eos_token
- # Load model to defined device
- model = AutoModelForCausalLM.from_pretrained(model_id).to(device)
-
- # Load grammar
- with open(f"examples/grammars/calflow.ebnf", "r") as file:
- grammar_str = file.read()
-
- grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer)
- grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
-
- # Generate
- prompts = [
- 'Generate 3 CalFlow strings: 1.(Yield (toRecipient (CurrentUser))) 2.(Yield (CreateCommitEventWrapper (CreatePreflightEventWrapper (Event.subject_? (?= "choose the meeting"))))) 3.'
- ]
-
- input_ids = tokenizer(
- prompts, add_special_tokens=False, return_tensors="pt", padding=True
- )["input_ids"].to(
- device
- ) # Move input_ids to the same device as model
-
- n_examples = input_ids.shape[0]
-
- max_new_tokens = 50
- unconstrained_output = model.generate(
- input_ids,
- do_sample=False,
- max_new_tokens=max_new_tokens,
- repetition_penalty=1.9,
- num_return_sequences=1,
- )
- constrained_output = model.generate(
- input_ids,
- do_sample=False,
- max_new_tokens=max_new_tokens,
- logits_processor=[grammar_processor],
- repetition_penalty=1.9,
- num_return_sequences=1,
- )
-
- # decode outputs (possibly of different lengths across decoding modes)
- generations = tokenizer.batch_decode(
- unconstrained_output, skip_special_tokens=True
- ) + tokenizer.batch_decode(constrained_output, skip_special_tokens=True)
-
- parsed_grammar = parse_ebnf(grammar_str)
- string_grammar = StringRecognizer(
- parsed_grammar.grammar_encoding, parsed_grammar.symbol_table["root"]
- )
-
- print()
- for i in range(n_examples):
- print(f"Unconstrained: {generations[i]}")
- constrained_generation = generations[i + n_examples]
- print(f"Constrained: {constrained_generation}")
- print(
- f"The constrained generation matches the grammar: {string_grammar._accept_string(constrained_generation[len(prompts[i]):])}"
- )
- print(
- f"The generated prefix matches the grammar: {string_grammar._accept_prefix(constrained_generation[len(prompts[i]):])}"
- )
- print()
-
-
-if __name__ == "__main__":
- main()
-
-
-##########################
-# Example output:
-#
-# Unconstrained: Generate 3 CalFlow strings: 1.(Yield (toRecipient (CurrentUser))) 2.(Yield (CreateCommitEventWrapper (CreatePreflightEventWrapper (Event.subject_? (?= "choose the meeting"))))) 3.((yielder) ((reciever)) (((event-type)? ("create")(("prefight" ?))))
-# ```
-# Constrained: Generate 3 CalFlow strings: 1.(Yield (toRecipient (CurrentUser))) 2.(Yield (CreateCommitEventWrapper (CreatePreflightEventWrapper (Event.subject_? (?= "choose the meeting"))))) 3.(Yield (Path.apply "create"))
-# The constrained generation matches the grammar: True
-# The generated prefix matches the grammar: True
-##########################
diff --git a/examples/generate_chinese.py b/examples/generate_chinese.py
deleted file mode 100644
index c1cf9f3..0000000
--- a/examples/generate_chinese.py
+++ /dev/null
@@ -1,45 +0,0 @@
-from transformers import AutoModelForCausalLM, AutoTokenizer
-from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
-from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
-
-import logging
-
-logging.basicConfig(level=logging.DEBUG)
-
-
-def main():
-
- # Load model and tokenizer
- tokenizer = AutoTokenizer.from_pretrained("gpt2") # JackFram/llama-68m"
- tokenizer.pad_token = tokenizer.eos_token
- model = AutoModelForCausalLM.from_pretrained("gpt2") # Load model to defined device
-
- # Load grammar
- with open("examples/grammars/chinese.ebnf", "r") as file:
- grammar_str = file.read()
- grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer, unicode=True)
- grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
-
- # Generate
- prefix1 = "English: coffee, Chinese: "
- prefix2 = "English: dog, Chinese: "
- input_ids = tokenizer(
- [prefix1, prefix2], add_special_tokens=False, return_tensors="pt", padding=True
- )["input_ids"]
-
- output = model.generate(
- input_ids,
- do_sample=False,
- max_new_tokens=20,
- logits_processor=[grammar_processor],
- repetition_penalty=1.1,
- num_return_sequences=1,
- )
- # decode output
- generations = tokenizer.batch_decode(output, skip_special_tokens=True)
-
- print(generations)
-
-
-if __name__ == "__main__":
- main()
diff --git a/examples/generate_emoji.py b/examples/generate_emoji.py
deleted file mode 100644
index 81059eb..0000000
--- a/examples/generate_emoji.py
+++ /dev/null
@@ -1,49 +0,0 @@
-from transformers import AutoModelForCausalLM, AutoTokenizer
-from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
-from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
-
-import logging
-
-logging.basicConfig(level=logging.DEBUG)
-
-
-def main():
-
- # Load model and tokenizer
- tokenizer = AutoTokenizer.from_pretrained("gpt2") # JackFram/llama-68m"
- tokenizer.pad_token = tokenizer.eos_token
- model = AutoModelForCausalLM.from_pretrained("gpt2") # Load model to defined device
-
- # Load grammar
- with open("examples/grammars/emoji.ebnf", "r") as file:
- grammar_str = file.read()
- grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer, unicode=True)
- grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
-
- # Generate
- prefix1 = "Describe your feeling with emoji: "
- prefix2 = "Write a poem with emoji: "
- input_ids = tokenizer(
- [prefix1, prefix2], add_special_tokens=False, return_tensors="pt", padding=True
- )["input_ids"]
-
- output = model.generate(
- input_ids,
- do_sample=False,
- max_new_tokens=100,
- logits_processor=[grammar_processor],
- repetition_penalty=1.1,
- num_return_sequences=1,
- )
- # decode output
- generations = tokenizer.batch_decode(output, skip_special_tokens=True)
- print(generations)
-
- """
- ['Describe your feeling with emoji: ππππ―π
ππππππππ
πππππππππππ
ππππππππππ', 'Write a poem with emoji: πππππππππππ
πππππππππππππππππππππππ']
-
- """
-
-
-if __name__ == "__main__":
- main()
diff --git a/examples/generate_japanese.py b/examples/generate_japanese.py
deleted file mode 100644
index c765b99..0000000
--- a/examples/generate_japanese.py
+++ /dev/null
@@ -1,49 +0,0 @@
-from transformers import AutoModelForCausalLM, AutoTokenizer
-from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
-from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
-
-import logging
-
-logging.basicConfig(level=logging.DEBUG)
-
-
-def main():
-
- # Load model and tokenizer
- tokenizer = AutoTokenizer.from_pretrained(
- "JackFram/llama-68m"
- ) # JackFram/llama-68m"
- tokenizer.pad_token = tokenizer.eos_token
- model = AutoModelForCausalLM.from_pretrained(
- "JackFram/llama-68m"
- ) # Load model to defined device
-
- # Load grammar
- with open("examples/grammars/japanese.ebnf", "r") as file:
- grammar_str = file.read()
- grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer, unicode=True)
- grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
-
- # Generate
- prefix1 = "γγγ«γ‘γ―δΈη"
- prefix2 = "γγγ«γ‘γ―δΈη"
- input_ids = tokenizer(
- [prefix1, prefix2], add_special_tokens=False, return_tensors="pt", padding=True
- )["input_ids"]
-
- output = model.generate(
- input_ids,
- do_sample=False,
- max_new_tokens=20,
- logits_processor=[grammar_processor],
- repetition_penalty=1.1,
- num_return_sequences=1,
- )
- # decode output
- generations = tokenizer.batch_decode(output, skip_special_tokens=True)
-
- print(generations)
-
-
-if __name__ == "__main__":
- main()
diff --git a/examples/generate_json_array.py b/examples/generate_json_array.py
deleted file mode 100644
index 9b09401..0000000
--- a/examples/generate_json_array.py
+++ /dev/null
@@ -1,46 +0,0 @@
-import torch
-from transformers import AutoModelForCausalLM, AutoTokenizer
-from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
-from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
-
-if __name__ == "__main__":
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- print(f"Using device: {device}")
-
- model_id = "mistralai/Mistral-7B-v0.1"
-
- # Load model and tokenizer
- tokenizer = AutoTokenizer.from_pretrained(model_id)
- tokenizer.pad_token = tokenizer.eos_token
-
- model = AutoModelForCausalLM.from_pretrained(model_id).to(
- device
- ) # Load model to defined device
- model.generation_config.pad_token_id = model.generation_config.eos_token_id
-
- # Load grammar
- with open("examples/grammars/json_arr.ebnf", "r") as file:
- grammar_str = file.read()
- grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer)
- grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
-
- # Generate
- prefix1 = "This is a valid json array for student records:"
- prefix2 = "This is a valid json array for shopping cart:"
- input_ids = tokenizer(
- [prefix1, prefix2], add_special_tokens=False, return_tensors="pt", padding=True
- )["input_ids"].to(
- device
- ) # Move input_ids to the same device as model
-
- output = model.generate(
- input_ids,
- do_sample=False,
- max_new_tokens=60,
- logits_processor=[grammar_processor],
- repetition_penalty=1.0,
- num_return_sequences=1,
- )
- # decode output
- generations = tokenizer.batch_decode(output, skip_special_tokens=True)
- print(generations)
diff --git a/examples/generate_korean.py b/examples/generate_korean.py
deleted file mode 100644
index fe07594..0000000
--- a/examples/generate_korean.py
+++ /dev/null
@@ -1,45 +0,0 @@
-from transformers import AutoModelForCausalLM, AutoTokenizer
-from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
-from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
-
-import logging
-
-logging.basicConfig(level=logging.DEBUG)
-
-
-def main():
-
- # Load model and tokenizer
- tokenizer = AutoTokenizer.from_pretrained("gpt2") # JackFram/llama-68m"
- tokenizer.pad_token = tokenizer.eos_token
- model = AutoModelForCausalLM.from_pretrained("gpt2") # Load model to defined device
-
- # Load grammar
- with open("examples/grammars/korean.ebnf", "r") as file:
- grammar_str = file.read()
- grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer, unicode=True)
- grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
-
- # Generate
- prefix1 = "English: coffee, Korean: "
- prefix2 = "English: dog, Korean: "
- input_ids = tokenizer(
- [prefix1, prefix2], add_special_tokens=False, return_tensors="pt", padding=True
- )["input_ids"]
-
- output = model.generate(
- input_ids,
- do_sample=False,
- max_new_tokens=20,
- logits_processor=[grammar_processor],
- repetition_penalty=1.1,
- num_return_sequences=1,
- )
- # decode output
- generations = tokenizer.batch_decode(output, skip_special_tokens=True)
-
- print(generations)
-
-
-if __name__ == "__main__":
- main()
diff --git a/examples/generate_overnight.py b/examples/generate_overnight.py
deleted file mode 100644
index 0bcd5c0..0000000
--- a/examples/generate_overnight.py
+++ /dev/null
@@ -1,116 +0,0 @@
-import torch
-import argparse
-from transformers import AutoModelForCausalLM, AutoTokenizer
-from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
-from transformers_cfg.recognizer import StringRecognizer
-from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
-from transformers_cfg.parser import parse_ebnf
-
-
-def parse_args():
- parser = argparse.ArgumentParser(description="Generate overnight blocks strings")
- parser.add_argument(
- "--model-id",
- type=str,
- default="/dlabdata1/llm_hub/Mistral-7B-v0.1",
- help="Model ID",
- )
- parser.add_argument("--device", type=str, help="Device to put the model on")
- return parser.parse_args()
-
-
-def main():
- args = parse_args()
- model_id = args.model_id
-
- # Detect if GPU is available, otherwise use CPU
- device = torch.device(
- args.device or ("cuda" if torch.cuda.is_available() else "cpu")
- )
- print(f"Using device: {device}")
-
- # Load model and tokenizer
- tokenizer = AutoTokenizer.from_pretrained(model_id)
- tokenizer.pad_token = tokenizer.eos_token
- # Load model to defined device
- model = AutoModelForCausalLM.from_pretrained(model_id).to(device)
-
- # Load grammar
- with open(f"examples/grammars/overnight.ebnf", "r") as file:
- grammar_str = file.read()
-
- parsed_grammar = parse_ebnf(grammar_str)
- grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer)
- grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
-
- # Generate
- prompts = [
- "Translate natural language to DSL:\n"
- + "Q: which brick is no wider than 3 inches\n"
- + "A: listValue (filter (getProperty (singleton en.block) !type) (ensureNumericProperty width) <= (ensureNumericEntity 3 en.inch)))\n"
- + "Q: which block is above block 1\n"
- + "A: (listValue (filter (filter (getProperty (singleton en.block) !type) (reverse above) = en.block.block1) above = en.block.block1))\n"
- + "Q: what block is longer than 3 inches\n"
- + "A: "
- ]
-
- input_ids = tokenizer(
- prompts, add_special_tokens=False, return_tensors="pt", padding=True
- )["input_ids"].to(
- device
- ) # Move input_ids to the same device as model
-
- n_examples = input_ids.shape[0]
-
- max_new_tokens = 50
- unconstrained_output = model.generate(
- input_ids,
- do_sample=False,
- max_new_tokens=max_new_tokens,
- repetition_penalty=1.9,
- num_return_sequences=1,
- )
- constrained_output = model.generate(
- input_ids,
- do_sample=False,
- max_new_tokens=max_new_tokens,
- logits_processor=[grammar_processor],
- repetition_penalty=1.9,
- num_return_sequences=1,
- )
-
- parsed_grammar = parse_ebnf(grammar_str)
- string_grammar = StringRecognizer(
- parsed_grammar.grammar_encoding, parsed_grammar.symbol_table["root"]
- )
-
- # decode outputs (possibly of different lengths across decoding modes)
- generations = tokenizer.batch_decode(
- unconstrained_output, skip_special_tokens=True
- ) + tokenizer.batch_decode(constrained_output, skip_special_tokens=True)
- print()
- for i in range(n_examples):
- print(f"Unconstrained: {generations[i]}")
- constrained_generation = generations[i + n_examples]
- print(f"Constrained: {generations[i + n_examples]}")
- print(
- f"The constrained generation matches the grammar: {string_grammar._accept_string(constrained_generation[len(prompts[i]):])}"
- )
- print(
- f"The generated prefix matches the grammar: {string_grammar._accept_prefix(constrained_generation[len(prompts[i]):])}"
- )
- print()
-
-
-if __name__ == "__main__":
- main()
-
-
-##########################
-# Example output:
-#
-# Unconstrained: how many states border colorado and border new mexico ? 1.
-# - How long is the drive from denver to albuquerque? The distance between Denver, Colorado (CO) & Alburqueque New Mexico(NM). Driving directions for your road trip or vacation: Get driving
-# Constrained: how many states border colorado and border new mexico ? answer(smallest_one(area_1(stateid('colorado'))))
-#
-##########################
diff --git a/examples/generate_russian.py b/examples/generate_russian.py
deleted file mode 100644
index 8b041ab..0000000
--- a/examples/generate_russian.py
+++ /dev/null
@@ -1,45 +0,0 @@
-from transformers import AutoModelForCausalLM, AutoTokenizer
-from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
-from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
-
-import logging
-
-logging.basicConfig(level=logging.DEBUG)
-
-
-def main():
-
- # Load model and tokenizer
- tokenizer = AutoTokenizer.from_pretrained("gpt2") # JackFram/llama-68m"
- tokenizer.pad_token = tokenizer.eos_token
- model = AutoModelForCausalLM.from_pretrained("gpt2") # Load model to defined device
-
- # Load grammar
- with open("examples/grammars/russian.ebnf", "r") as file:
- grammar_str = file.read()
- grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer, unicode=True)
- grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
-
- # Generate
- prefix1 = "English: coffee, Russian: "
- prefix2 = "English: dog, Russian: "
- input_ids = tokenizer(
- [prefix1, prefix2], add_special_tokens=False, return_tensors="pt", padding=True
- )["input_ids"]
-
- output = model.generate(
- input_ids,
- do_sample=False,
- max_new_tokens=20,
- logits_processor=[grammar_processor],
- repetition_penalty=1.1,
- num_return_sequences=1,
- )
- # decode output
- generations = tokenizer.batch_decode(output, skip_special_tokens=True)
-
- print(generations)
-
-
-if __name__ == "__main__":
- main()
diff --git a/examples/grammars/Information_extraction.ebnf b/examples/grammars/Information_extraction.ebnf
deleted file mode 100644
index d865b06..0000000
--- a/examples/grammars/Information_extraction.ebnf
+++ /dev/null
@@ -1,8 +0,0 @@
-root ::= triplet ( delim triplet )*
-triplet ::= "[s] " subject " [r] " predicate " [o] " object
-delim ::= " [e] "
-subject ::= entity
-predicate ::= relation
-object ::= entity
-entity ::= "entity1" | "entity2" | "entity3" | "entity4"
-relation ::= "relation1" | "relation2" | "relation3" | "relation4"
diff --git a/examples/grammars/cIE.ebnf b/examples/grammars/cIE.ebnf
index d865b06..c1815e4 100644
--- a/examples/grammars/cIE.ebnf
+++ b/examples/grammars/cIE.ebnf
@@ -1,8 +1,10 @@
+# This is just for illustration purposes. Depending on the actual use case, the set of entities and relations can be extended to include more entities and relations.
root ::= triplet ( delim triplet )*
triplet ::= "[s] " subject " [r] " predicate " [o] " object
delim ::= " [e] "
-subject ::= entity
+subject ::= subject_entity
predicate ::= relation
-object ::= entity
-entity ::= "entity1" | "entity2" | "entity3" | "entity4"
-relation ::= "relation1" | "relation2" | "relation3" | "relation4"
+object ::= object_entity
+subject_entity ::= "Rene Descartes" | "Isaac Newton" | "Albert Einstein" | "Stephen Hawking" | "Galileo Galilei" | "Nikola Tesla" | "Leonardo da Vinci" | "Aristotle" | "Plato" | "Socrates" | "Pythagoras" | "Euclid" | "Archimedes" | "Hippocrates" | "Ptolemy" | "Nicolaus Copernicus" | "Johannes Kepler" | "Galileo Galilei" | "Isaac Newton" | "Albert Einstein" | "Stephen Hawking" | "Nikola Tesla" | "Leonardo da Vinci" | "Aristotle"
+object_entity ::= "France" | "England" | "Germany" | "Italy" | "Greece" | "Egypt" | "China" | "India" | "Russia" | "USA" | "Canada" | "Brazil" | "Australia" | "Japan" | "South Africa" | "Mexico" | "Argentina" | "Spain" | "Portugal" | "Netherlands" | "Belgium" | "Sweden" | "Norway" | "Denmark" | "Finland" | "Poland" | "Czech Republic" | "Slovakia" | "Hungary" | "Romania" | "Bulgaria" | "Greece" | "Turkey" | "Iran" | "Iraq" | "Syria"
+relation ::= "was born in" | "died in" | "lived in" | "worked in" | "studied in" | "invented" | "discovered" | "wrote" | "painted" | "sculpted" | "composed" | "played" | "sang" | "acted" | "directed" | "produced" | "won" | "lost" | "was awarded" | "was nominated" | "was married to" | "was divorced from" | "had children with" | "was friends with" | "was enemies with"
diff --git a/tests/test_hf_generation/test_generation.py b/tests/test_hf_generation/test_generation.py
index 86698a5..f40d87e 100644
--- a/tests/test_hf_generation/test_generation.py
+++ b/tests/test_hf_generation/test_generation.py
@@ -178,7 +178,7 @@ def test_generate_emoji(self):
tokenizer = self.tokenizers[model_id]
grammar = IncrementalTokenRecognizer(
- grammar_str, start_rule_name="root", tokenizer=tokenizer, unicode=True
+ grammar_str, start_rule_name="root", tokenizer=tokenizer
)
grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
diff --git a/tests/test_hf_generation/test_unicode_generation.py b/tests/test_hf_generation/test_unicode_generation.py
index fe92e65..e7fefef 100644
--- a/tests/test_hf_generation/test_unicode_generation.py
+++ b/tests/test_hf_generation/test_unicode_generation.py
@@ -1,6 +1,7 @@
from unittest import TestCase
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers_cfg.token_grammar_recognizer import IncrementalTokenRecognizer
+from transformers_cfg.token_grammar_recognizer import AbsTokenRecognizer
from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
@@ -9,6 +10,21 @@
]
+class TestDetectUnicode(TestCase):
+ def test_detect_unicode(self):
+ # Test with a string containing only ASCII characters
+ self.assertFalse(AbsTokenRecognizer.detect_unicode("Hello, world!"))
+
+ # Test with a string containing Unicode characters
+ self.assertTrue(AbsTokenRecognizer.detect_unicode("δ½ ε₯½οΌδΈηοΌ"))
+
+ # Test with an empty string
+ self.assertFalse(AbsTokenRecognizer.detect_unicode(""))
+
+ # Test with a string containing a mix of ASCII and Unicode characters
+ self.assertTrue(AbsTokenRecognizer.detect_unicode("Hello, RenΓ©!"))
+
+
class TestGreedyDecoding(TestCase):
@classmethod
def setUpClass(cls):
@@ -30,7 +46,7 @@ def test_generate_emoji(self):
tokenizer = self.tokenizers[model_id]
grammar = IncrementalTokenRecognizer(
- grammar_str, start_rule_name="root", tokenizer=tokenizer, unicode=True
+ grammar_str, start_rule_name="root", tokenizer=tokenizer
)
grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
diff --git a/transformers_cfg/cli/cli_main.py b/transformers_cfg/cli/cli_main.py
index 2377de4..c72c7b7 100755
--- a/transformers_cfg/cli/cli_main.py
+++ b/transformers_cfg/cli/cli_main.py
@@ -2,6 +2,10 @@
import argparse
from transformers_cfg.tokenization.utils import is_tokenizer_supported
+from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
+from transformers_cfg.grammar_utils import IncrementalGrammarConstraint
+from transformers_cfg.generation.logits_process import GrammarConstrainedLogitsProcessor
+import torch
def parse_arguments(args=None):
@@ -14,14 +18,80 @@ def parse_arguments(args=None):
"model", type=str, help="The unique model name on HF hub."
)
+ # Sub-command: generate
+ generate_parser = subparsers.add_parser(
+ "generate", help="Generate text with grammar constraints"
+ )
+ generate_parser.add_argument(
+ "-m",
+ "--model_id",
+ type=str,
+ required=True,
+ help="Model identifier for loading the tokenizer and model",
+ )
+ generate_parser.add_argument(
+ "-g",
+ "--grammar_file_path",
+ type=str,
+ required=True,
+ help="Path to the grammar file",
+ )
+ generate_parser.add_argument(
+ "-p",
+ "--prompt",
+ type=str,
+ required=True,
+ help="Prompt for generation",
+ )
+ generate_parser.add_argument(
+ "-d",
+ "--device",
+ type=str,
+ default="cuda" if torch.cuda.is_available() else "cpu",
+ choices=["cpu", "cuda"],
+ help="Device to run the model on",
+ )
+ generate_parser.add_argument(
+ "-n",
+ "--max_new_tokens",
+ type=int,
+ default=20,
+ help="Maximum number of new tokens to generate",
+ )
+ generate_parser.add_argument(
+ "--repetition_penalty",
+ type=float,
+ default=1.1,
+ help="Penalty for token repetition",
+ )
+ generate_parser.add_argument(
+ "--use_4bit",
+ action="store_true",
+ help="Load the model in 4-bit mode using bitsandbytes",
+ )
+ generate_parser.add_argument(
+ "--use_8bit",
+ action="store_true",
+ help="Load the model in 8-bit mode using bitsandbytes",
+ )
+
+ generate_parser.add_argument(
+ "--no_contrast_mode",
+ action="store_true",
+ help="Disable contrast mode (enabled by default)",
+ )
+
+ generate_parser.add_argument(
+ "--save_to",
+ type=str,
+ help="File path to save the generated text",
+ )
+
return parser.parse_args(args)
def check_model_support(model_name):
# Check if the model tokenizer is supported
-
- # for now the only condition is that the tokenizer is in SUPPORTED_TOKENIZERS
- # maybe there will be more conditions in the future
if is_tokenizer_supported(model_name):
print(f"{model_name} is supported")
return True
@@ -30,11 +100,117 @@ def check_model_support(model_name):
return False
+def generate_text(args):
+ # Load model and tokenizer
+ tokenizer = AutoTokenizer.from_pretrained(args.model_id)
+ tokenizer.pad_token = tokenizer.eos_token
+
+ # Load the model with bitsandbytes if 8bit or 4bit flag is set
+ if args.use_8bit or args.use_4bit:
+ try:
+ pass
+ except ImportError:
+ raise ImportError(
+ "You need to install bitsandbytes to use 8-bit or 4-bit modes. Install it with `pip install bitsandbytes`."
+ )
+
+ bnb_config = BitsAndBytesConfig(
+ load_in_8bit=args.use_8bit,
+ load_in_4bit=args.use_4bit,
+ bnb_4bit_compute_dtype=torch.bfloat16,
+ )
+
+ model = AutoModelForCausalLM.from_pretrained(
+ args.model_id, quantization_config=bnb_config, device_map="auto"
+ )
+ else:
+ model = AutoModelForCausalLM.from_pretrained(args.model_id).to(args.device)
+
+ # set special tokens in generation config
+ model.generation_config.pad_token_id = tokenizer.pad_token_id
+
+ inputs = tokenizer(
+ args.prefix_prompt, add_special_tokens=False, return_tensors="pt", padding=True
+ )
+ input_ids = inputs["input_ids"].to(args.device)
+ attention_mask = inputs["attention_mask"].to(args.device)
+
+ # Load grammar
+ with open(args.grammar_file_path, "r") as file:
+ grammar_str = file.read()
+ grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer)
+ grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
+
+ # Generate with grammar constraints
+ constrained_output = model.generate(
+ input_ids,
+ attention_mask=attention_mask,
+ do_sample=False,
+ max_new_tokens=args.max_new_tokens,
+ logits_processor=[grammar_processor],
+ repetition_penalty=args.repetition_penalty,
+ num_return_sequences=1,
+ )
+
+ # remove prefix from the output
+ constrained_output = constrained_output[:, len(input_ids[0]) :]
+
+ constrained_generations = tokenizer.batch_decode(
+ constrained_output, skip_special_tokens=True
+ )
+
+ # print prompt first in color
+ print("\033[92m" + "Prompt:" + args.prefix_prompt + "\033[0m")
+
+ # Store results for optional file output
+ result = f"Prompt: {args.prefix_prompt}\n\n"
+
+ # Generate without grammar constraints (if contrast mode is enabled)
+ if not args.no_contrast_mode:
+ unconstrained_output = model.generate(
+ input_ids,
+ attention_mask=attention_mask,
+ do_sample=False,
+ max_new_tokens=args.max_new_tokens,
+ repetition_penalty=args.repetition_penalty,
+ num_return_sequences=1,
+ )
+ # remove prefix from the output
+ unconstrained_output = unconstrained_output[:, len(input_ids[0]) :]
+ unconstrained_generations = tokenizer.batch_decode(
+ unconstrained_output, skip_special_tokens=True
+ )
+
+ # Print results in different colors
+ print("\033[91m" + "Unconstrained Generation:" + "\033[0m")
+ result += "Unconstrained Generation:\n"
+ for generation in unconstrained_generations:
+ print(generation)
+ result += generation + "\n"
+
+ print("\033[94m" + "Constrained Generation:" + "\033[0m")
+ result += "Constrained Generation:\n"
+ for generation in constrained_generations:
+ print(generation)
+ result += generation + "\n"
+
+ # Save to file if save_to is provided
+ if args.save_to:
+ with open(args.save_to, "w") as f:
+ f.write(result)
+ print(f"\nResults saved to {args.save_to}")
+
+
def main(args=None):
args = parse_arguments(args)
+
if args.command == "check":
check_model_support(args.model)
+ elif args.command == "generate":
+ generate_text(args)
if __name__ == "__main__":
main()
+
+# TODO, add support for device selection for parsing
diff --git a/transformers_cfg/generation/logits_process.py b/transformers_cfg/generation/logits_process.py
index a09a773..24b1028 100644
--- a/transformers_cfg/generation/logits_process.py
+++ b/transformers_cfg/generation/logits_process.py
@@ -15,11 +15,12 @@
class GrammarConstrainedLogitsProcessor(LogitsProcessor):
- def __init__(self, grammar_constraint, valid_token_start_idx=None):
+ def __init__(self, grammar_constraint, valid_token_start_idx=None, device=None):
self.last_size = None
self.grammar_constraint = grammar_constraint
self.batch_parsing_states = None
- self.valid_token_start_idx = None
+ self.valid_token_start_idx = valid_token_start_idx
+ self.device = device
def mask_logits(self, logits, device):
masked_logits = logits.clone()
@@ -29,16 +30,22 @@ def mask_logits(self, logits, device):
acceptance = self.grammar_constraint.batch_filter_vocab(
self.batch_parsing_states, device
)
-
+
# if the logits size of the model is more than the tokennizer vocab
# we artificially expand the acceptance tensor and block everything
# beyond the tokenizer vocab size
acceptance_vocab_size = acceptance.shape[-1]
masked_logits_vocab_size = masked_logits.shape[-1]
if masked_logits_vocab_size != acceptance_vocab_size:
- assert acceptance_vocab_size < masked_logits_vocab_size, "impossible for tokenizer vocab to be less than model vocab"
+ assert (
+ acceptance_vocab_size < masked_logits_vocab_size
+ ), "impossible for tokenizer vocab to be less than model vocab"
vocab_size_diff = masked_logits_vocab_size - acceptance_vocab_size
- false_tensor = torch.zeros((*acceptance.shape[:-1], vocab_size_diff), dtype=torch.bool, device=device)
+ false_tensor = torch.zeros(
+ (*acceptance.shape[:-1], vocab_size_diff),
+ dtype=torch.bool,
+ device=device,
+ )
acceptance = torch.cat((acceptance, false_tensor), dim=-1)
# acceptance is a tensor of shape (batch_size, vocab_size)
@@ -70,14 +77,13 @@ def mask_logits(self, logits, device):
masked_logits[~acceptance] = -math.inf
return masked_logits
- # TODO: batching
- def process_logits(self, input_ids, scores,device=None):
+ def process_logits(self, input_ids, scores):
"""
:param input_ids:
:param scores:
:return:
"""
- if device is None:
+ if self.device is None:
device = scores.device
# we dynamically create stacks at the first call, so that we know the batch size and beam size
if self.batch_parsing_states is None:
diff --git a/transformers_cfg/token_grammar_recognizer.py b/transformers_cfg/token_grammar_recognizer.py
index dad204c..7f71736 100644
--- a/transformers_cfg/token_grammar_recognizer.py
+++ b/transformers_cfg/token_grammar_recognizer.py
@@ -16,11 +16,18 @@
class AbsTokenRecognizer(ABC):
- def __init__(self, grammar_str, tokenizer, start_rule_name="root", unicode=False, trie=None,homomorphism=None):
+ def __init__(
+ self,
+ grammar_str,
+ tokenizer,
+ start_rule_name="root",
+ trie=None,
+ homomorphism=None,
+ ):
parsed_grammar = parse_ebnf(grammar_str)
grammar_encoding = parsed_grammar.grammar_encoding
self.start_rule_id = parsed_grammar.symbol_table.get(start_rule_name)
- self.use_unicode = unicode
+ self.use_unicode = self.detect_unicode(grammar_str)
self.eos_token_id = tokenizer.eos_token_id
self.tokenizer = tokenizer
@@ -95,10 +102,24 @@ def validate_and_set_eos_acceptance(self, acceptance: torch.Tensor) -> torch.Ten
def accept_token_ids(self, token_ids, stacks) -> bool:
"""Accept a list of token IDs according to the grammar rules."""
raise NotImplementedError
-
+
+ @staticmethod
+ def detect_unicode(text: str) -> bool:
+ # check if the text contains any unicode characters
+ return any(ord(char) > 127 for char in text)
+
+
class IncrementalTokenRecognizer(AbsTokenRecognizer):
- def __init__(self, grammar_str, start_rule_name, tokenizer, unicode=False, trie=None,homomorphism=None):
- super().__init__(grammar_str, tokenizer, start_rule_name, unicode, trie=trie,homomorphism=homomorphism)
+ def __init__(
+ self, grammar_str, start_rule_name, tokenizer, trie=None, homomorphism=None
+ ):
+ super().__init__(
+ grammar_str,
+ tokenizer,
+ start_rule_name,
+ trie=trie,
+ homomorphism=homomorphism,
+ )
self.last_size = None
def _update_state_with_token_id(
@@ -334,8 +355,8 @@ def check_token_acceptance_in_trie(trie_node, stacks, grammar, eos_token_id, acc
class NonIncrementalTokenSeqRecognizer(IncrementalTokenRecognizer):
- def __init__(self, grammar_str, start_rule_name, tokenizer, unicode=False):
- super().__init__(grammar_str, start_rule_name, tokenizer, unicode)
+ def __init__(self, grammar_str, start_rule_name, tokenizer):
+ super().__init__(grammar_str, start_rule_name, tokenizer)
def update_state_with_batch_token_seqs(
self, input_ids, batch_parsing_states, valid_token_start_idx=None
@@ -391,10 +412,7 @@ def update_state_with_batch_token_seqs(
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenRecognizer = IncrementalTokenRecognizer(
- grammar_str=input_text,
- start_rule_name="root",
- tokenizer=tokenizer,
- unicode=True,
+ grammar_str=input_text, start_rule_name="root", tokenizer=tokenizer
)
japanese = "γγͺγΌγ " # "γγγ«γ‘γ―"