-
Notifications
You must be signed in to change notification settings - Fork 52
/
train_eval.py
218 lines (187 loc) · 10.3 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
from typing import Any, Optional, Dict, List
from dataclasses import dataclass, field
import torch
from lightning.pytorch import LightningModule, Trainer, seed_everything
from lightning.pytorch.callbacks import ModelCheckpoint
import transformers
from torch.utils.data import DataLoader
from typing import Optional, Dict
from dataclasses import dataclass, field
from dataloader import SupervisedDataset, DataCollator
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch import seed_everything
from torchvision import transforms
from constants import *
from lightning.pytorch.callbacks import BasePredictionWriter
from model import MiniGPT5_Model, MiniGPT5_InputProcessor
# from metric import *
class PredWriter(BasePredictionWriter):
def write_on_epoch_end(
self,
trainer: Trainer,
pl_module: LightningModule,
predictions: Any, # complex variables is ok
batch_indices: list[list[list[int]]],
) -> None:
output_folder = pl_module.output_folder
torch.save(predictions, os.path.join(output_folder, f"predictions-{trainer.local_rank}.pt"))
print(f'rank {trainer.local_rank} predictions saved')
def default_gpus():
return [0,1,2,3]
@dataclass
class ModelArguments:
model_type: Optional[str] = field(default="multimodal_encoder")
snr_loss: Optional[bool] = field(default=True)
model_save_name: Optional[str] = field(default="model_{epoch}-{step}")
stage1_weight: Optional[str] = field(default=None)
@dataclass
class DataArguments:
train_data_path: str = field(default=None, metadata={"help": "Path to the training data."})
val_data_path: str = field(default=None, metadata={"help": "Path to the validation data."})
test_data_path: str = field(default=None, metadata={"help": "Path to the test data."})
@dataclass
class TrainingArguments:
cache_dir: Optional[str] = field(default=None)
output_dir: str = field(default=WEIGHTFOLDER)
num_train_epochs:int = field(default=2)
per_device_train_batch_size:int = field(default=2)
per_device_eval_batch_size:int = field(default=2)
real_batch_size:int = field(default=48)
save_total_limit:int = field(default=1)
learning_rate:float = field(default=2e-5)
warmup_ratio:float = field(default=0.03)
warmup_steps:int = field(default=1000)
adam_epsilon:float = field(default=1e-8)
num_workers:int = field(default=16)
gpus: List[int] = field(default_factory=default_gpus)
resume: Optional[str] = field(default=None)
is_training: Optional[bool] = field(default=False)
test_weight: Optional[str] = field(default=None)
def make_supervised_data_module(data_args, training_args, data_collator, input_processor=None, output_vis_processor=None) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
train_dataset = SupervisedDataset(data_path=data_args.train_data_path, input_processor=input_processor, output_vis_processor=output_vis_processor)
eval_dataset = SupervisedDataset(data_path=data_args.val_data_path, input_processor=input_processor, output_vis_processor=output_vis_processor)
train_dataloader = DataLoader(train_dataset,
batch_size=training_args.per_device_train_batch_size,
num_workers=training_args.num_workers,
collate_fn=data_collator,
prefetch_factor=4,
pin_memory=True)
val_dataloader = DataLoader(eval_dataset,
batch_size=training_args.per_device_eval_batch_size,
num_workers=training_args.num_workers,
collate_fn=data_collator,
prefetch_factor=4,
pin_memory=True)
return train_dataloader, val_dataloader
def make_eval_data_module(data_args, training_args, data_collator, input_processor=None, output_vis_processor=None) -> Dict:
eval_dataset = SupervisedDataset(data_path=data_args.test_data_path, input_processor=input_processor, output_vis_processor=output_vis_processor, test=True)
val_dataloader = DataLoader(eval_dataset, batch_size=1, collate_fn=data_collator)
return val_dataloader
if __name__ == "__main__":
seed_everything(42)
torch.backends.cuda.matmul.allow_tf32 = True
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if isinstance(training_args.gpus, str):
training_args.gpus = [int(x) for x in training_args.gpus.split(',')]
if isinstance(data_args.train_data_path, str):
data_args.train_data_path = os.path.join(DATAFOLDER, data_args.train_data_path)
if isinstance(data_args.val_data_path, str):
data_args.val_data_path = os.path.join(DATAFOLDER, data_args.val_data_path)
if isinstance(data_args.test_data_path, str):
data_args.test_data_path = os.path.join(DATAFOLDER, data_args.test_data_path)
batch_size = training_args.real_batch_size
devices = training_args.gpus
num_devices = len(devices)
gradient_accumulation_steps = max(1,batch_size // (training_args.per_device_train_batch_size*num_devices))
if IS_STAGE2:
stage1_weight = model_args.stage1_weight
assert stage1_weight is not None, "stage2 weight needs stage1 weight, but stage1 weight path is None"
stage1_weight = os.path.join(WEIGHTFOLDER, stage1_weight)
model = MiniGPT5_Model.load_from_checkpoint(stage1_weight, strict=False, map_location="cpu", encoder_model_config=model_args, **vars(training_args))
else:
model = MiniGPT5_Model(encoder_model_config=model_args, **vars(training_args))
tokenizer = model.tokenizer
sd_tokenizer = model.sd_tokenizer
if training_args.is_training:
output_vis_processor = transforms.Compose(
[
transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(512),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
input_vis_processor = transforms.Compose(
[
transforms.Resize(224, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
]
)
input_processor = MiniGPT5_InputProcessor(tokenizer=tokenizer, image_processor=input_vis_processor)
data_collator = DataCollator(tokenizer=tokenizer, sd_tokenizer=sd_tokenizer)
train_dataloader, val_dataloader = make_supervised_data_module(data_args, training_args, data_collator, input_processor, output_vis_processor)
checkpoint_callback = ModelCheckpoint(
dirpath=training_args.output_dir,
filename=model_args.model_save_name,
monitor="val_loss",
save_top_k=1,
# save_last=True,
)
strategy = 'ddp'
if "CC3M" in DATAFOLDER:
val_check_interval = 0.25
else:
val_check_interval = 0.5
strategy = 'ddp_find_unused_parameters_true'
wandb_logger = WandbLogger(save_dir=training_args.output_dir, project="MiniGPT5_Model", offline=False, name=model_args.model_save_name)
trainer = Trainer(default_root_dir=training_args.output_dir, max_epochs=training_args.num_train_epochs,
accumulate_grad_batches=gradient_accumulation_steps,
accelerator="gpu", devices=devices,
strategy=strategy,
logger = wandb_logger,
precision='bf16-mixed',
val_check_interval=val_check_interval,
callbacks=[checkpoint_callback])
resume = training_args.resume
trainer.fit(model, train_dataloader, val_dataloader, ckpt_path=resume)
else:
# model.image_pipeline.enable_xformers_memory_efficient_attention()
output_vis_processor = transforms.Compose(
[
transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(512),
transforms.ToTensor(),
]
)
input_vis_processor = transforms.Compose(
[
transforms.Resize(224, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
]
)
input_processor = MiniGPT5_InputProcessor(tokenizer=tokenizer, image_processor=input_vis_processor)
data_collator = DataCollator(tokenizer=tokenizer, sd_tokenizer=sd_tokenizer)
pred_writer = PredWriter(write_interval="epoch")
wandb_logger = WandbLogger(save_dir=training_args.output_dir, project="MiniGPT5_Model", offline=True, name=model_args.model_save_name)
trainer = Trainer(default_root_dir=training_args.output_dir, max_epochs=training_args.num_train_epochs,
accelerator="gpu", devices=devices,
strategy='ddp',
logger = wandb_logger,
precision='bf16-mixed',
callbacks=[pred_writer])
val_dataloader = make_eval_data_module(data_args, training_args, data_collator, input_processor, output_vis_processor)
assert training_args.test_weight is not None, "test weight path is None"
ckpt_path = os.path.join(WEIGHTFOLDER, training_args.test_weight)
model.output_folder = os.path.join(OUTPUT_FOLDER, training_args.test_weight.split(".")[0]+OUTPUT_SUFFIX)
if not os.path.exists(model.output_folder):
os.makedirs(model.output_folder)
trainer.predict(model, val_dataloader, return_predictions=False, ckpt_path=ckpt_path)