diff --git a/Data/Weekly_Data.csv b/Data/Weekly_Data.csv index d047044..5295ae7 100644 --- a/Data/Weekly_Data.csv +++ b/Data/Weekly_Data.csv @@ -1,108 +1,110 @@ Player,School,Passing_Rate,Passing_TD,Rushing_TD,Power5,CPI -Jayden Daniels,LSU,197.7,22,4,1,17.857142857142858 -Michael Penix Jr.,Washington,189.9,20,0,1,25.0 -J.J. McCarthy,Michigan,195.9,14,3,1,25.0 -Jalen Milroe,Alabama,174.7,11,5,1,21.428571428571427 -Timmy Mcclain,UCF,177.7,9,1,1,12.5 -Kaidon Salter,Liberty,175.6,14,6,0,25.0 -Caleb Williams,USC,187.0,23,6,1,21.428571428571427 -Jaxson Dart,Ole Miss,167.8,12,4,1,20.833333333333336 -Diego Pavia,New Mexico State,167.0,14,2,0,14.285714285714285 -Kyle McCord,Ohio State,165.9,11,0,1,25.0 -Dillon Gabriel,Oklahoma,178.2,16,5,1,25.0 -Brady Cook,Missouri,168.7,14,4,1,21.428571428571427 -Tyler Van Dyke,Miami (FL),171.8,16,1,1,16.666666666666664 -Cardell Williams,Tulsa,151.6,8,3,0,12.5 -Quinn Ewers,Texas,163.8,11,5,1,20.833333333333336 -Brett Gabbert,Miami (OH),162.9,14,2,0,21.428571428571427 -Jordan McCloud,James Madison,168.1,14,2,0,25.0 -Carson Beck,Georgia,163.8,12,3,1,25.0 -Jack Plummer,Louisville,153.2,13,1,1,21.428571428571427 -Sam Hartman,Notre Dame,166.9,18,2,1,18.75 -Drake Maye,North Carolina,159.1,12,4,1,25.0 -JT Daniels,Rice,157.4,15,0,0,12.5 -Spencer Rattler,South Carolina,163.3,11,2,1,8.333333333333332 -D.J. Uiagalelei,Oregon State,158.9,15,5,1,21.428571428571427 -Keyone Jenkins,Florida International,133.5,5,4,0,10.714285714285714 -Garrett Greene,West Virginia,143.7,6,5,1,16.666666666666664 -Zeon Chriss,Louisiana,159.7,7,5,0,16.666666666666664 -TJ Finley,Texas State,160.5,14,3,0,17.857142857142858 -Bo Nix,Oregon,178.2,17,1,1,20.833333333333336 -Cooper Legas,Utah State,159.7,13,0,0,10.714285714285714 -Darren Grainger,Georgia State,154.4,8,5,0,20.833333333333336 -Graham Mertz,Florida,163.7,12,2,1,17.857142857142858 -Cameron Ward,Washington State,159.8,14,3,1,16.666666666666664 -Gunnar Watson,Troy,144.8,11,0,0,17.857142857142858 -Grayson McCall,Coastal Carolina,143.9,8,1,0,12.5 -Haynes King,Georgia Tech,155.4,16,2,1,12.5 -Grant Wilson,Old Dominion,134.8,7,1,0,12.5 -Chandler Rogers,North Texas,155.8,12,3,0,12.5 -Carter Bradley,South Alabama,149.2,11,1,0,12.5 -Jordan Travis,Florida State,154.1,13,4,1,25.0 -Shedeur Sanders,Colorado,160.3,21,3,1,14.285714285714285 -Dante Moore,UCLA,129.8,10,0,1,16.666666666666664 -DeQuan Finn,Toledo,149.3,12,4,0,21.428571428571427 -Seth Henigan,Memphis,144.7,13,3,0,16.666666666666664 -Joey Aguilar,Appalachian State,144.5,14,1,0,12.5 -Brayden Fowler-Nicolosi,Colorado State,137.7,14,1,0,12.5 -Taulia Tagovailoa,Maryland,146.0,16,4,1,17.857142857142858 -K.J. Jefferson,Arkansas,148.9,14,1,1,7.142857142857142 -Garrett Shrader,Syracuse,135.5,8,6,1,14.285714285714285 -Dylan Hopkins,New Mexico,130.4,7,1,0,8.333333333333332 -Ashton Daniels,Stanford,139.6,7,0,1,8.333333333333332 -Noah Fifita,Arizona,156.7,8,0,1,14.285714285714285 -Max Johnson,Texas A&M,133.5,7,1,1,14.285714285714285 -Jacob Zeno,UAB,148.3,12,4,0,7.142857142857142 -Will Rogers,Mississippi State,138.7,10,0,1,12.5 -Thomas Castellanos,Boston College,135.5,10,7,1,12.5 -Preston Stone,SMU,137.6,14,1,0,16.666666666666664 -Mikey Keene,Fresno State,147.7,15,0,0,21.428571428571427 -Byrum Brown,South Florida,133.9,12,7,0,10.714285714285714 -Chevan Cordeiro,San Jose State,130.4,8,3,0,7.142857142857142 -Donovan Smith,Houston,144.5,13,4,1,12.5 -Phil Jurkovec,Pitt,124.6,6,1,1,8.333333333333332 -Brayden Schager,Hawaii,137.8,17,1,0,7.142857142857142 -Luke Altmyer,Illinois,127.7,8,3,1,10.714285714285714 -Cam Fancher,Marshall,135.0,7,2,0,16.666666666666664 -Will Howard,Kansas State,130.6,9,6,1,16.666666666666664 -Mitch Griffis,Wake Forest,129.8,9,0,1,12.5 -Riley Leonard,Duke,129.8,3,4,1,20.833333333333336 -Nicholas Vattiato,Middle Tennessee State,137.4,11,2,0,7.142857142857142 -Rocco Becht,Iowa State,134.4,12,2,1,14.285714285714285 -Devin Leary,Kentucky,130.2,14,1,1,17.857142857142858 -Emory Jones,Cincinnati,131.2,11,3,1,8.333333333333332 -Tayven Jackson,Indiana,118.3,2,1,1,8.333333333333332 -Rocky Lombardi,Northern Illinois,123.4,6,2,0,10.714285714285714 -Kyron Drones,Virginia Tech,128.3,6,4,1,10.714285714285714 -Taylen Green,Boise State,116.1,5,4,0,10.714285714285714 -Jack Turner,Louisiana Tech,121.1,5,2,0,9.375 -Jalen Mayden,San Diego State,125.1,6,3,0,10.714285714285714 -Joe Milton,Tennessee,133.6,10,3,1,20.833333333333336 -Drew Allar,Penn State,145.3,12,3,1,25.0 -Kurtis Rourke,Ohio,131.7,8,2,0,17.857142857142858 -Ta'Quan Roberson,Connecticut,131.6,7,1,0,4.166666666666666 -Austin Reed,Western Kentucky,134.2,14,3,0,16.666666666666664 -Noah Kim,Michigan State,119.0,6,0,1,8.333333333333332 -Andrew Peasley,Wyoming,141.6,12,4,0,17.857142857142858 -Michael Alaimo,Kent State,111.2,2,1,0,3.571428571428571 -Hudson Card,Purdue,121.1,7,3,1,7.142857142857142 -Heinrich Haarberg,Nebraska,116.9,4,3,1,12.5 -Davis Brin,Georgia Southern,130.3,12,1,0,16.666666666666664 -Cade Klubnik,Clemson,135.4,11,3,1,16.666666666666664 -Gavin Wimsatt,Rutgers,114.2,7,4,1,17.857142857142858 -E.J. Warner,Temple,121.3,12,0,0,7.142857142857142 -Jase Bauer,Central Michigan,112.2,4,7,0,14.285714285714285 -Payton Thorne,Auburn,118.6,4,2,1,12.5 -Billy Wiles,Southern Mississippi,112.7,7,1,0,4.166666666666666 -Tanner Mordecai,Wisconsin,118.8,3,4,1,16.666666666666664 -Alan Bowman,Oklahoma State,112.6,4,1,1,16.666666666666664 -Brennan Armstrong,North Carolina State,112.5,5,3,1,14.285714285714285 -Daniel Richardson,Florida Atlantic,121.7,5,0,0,12.5 -Jiya Wright,Louisiana-Monroe,114.1,6,1,0,8.333333333333332 -Athan Kaliakmanis,Minnesota,110.8,6,2,1,12.5 -Keegan Shoemaker,Sam Houston,116.2,6,0,0,0.0 -Austin Smith,Eastern Michigan,114.5,6,1,0,14.285714285714285 -Ben Bryant,Northwestern,115.9,6,2,1,12.5 +Jayden Daniels,LSU,197.7,22,4,1,9.996470516382256 +Michael Penix Jr.,Washington,189.9,20,0,1,22.69695237105186 +J.J. McCarthy,Michigan,195.9,14,3,1,21.270050538343227 +Jalen Milroe,Alabama,174.7,11,5,1,13.570723302000426 +Timmy Mcclain,UCF,177.7,9,1,1,1.6849078341013826 +Kaidon Salter,Liberty,175.6,14,6,0,12.20981023988543 +Caleb Williams,USC,187.0,23,6,1,8.420336946119777 +Jaxson Dart,Ole Miss,167.8,12,4,1,17.703387784662432 +Diego Pavia,New Mexico State,167.0,14,2,0,0.7450503077325233 +Kyle McCord,Ohio State,165.9,11,0,1,26.14413878407365 +Dillon Gabriel,Oklahoma,178.2,16,5,1,27.715560317738326 +Brady Cook,Missouri,168.7,14,4,1,16.729790617545717 +Tyler Van Dyke,Miami (FL),171.8,16,1,1,5.311439268232076 +Cardell Williams,Tulsa,151.6,8,3,0,2.171415441176471 +Quinn Ewers,Texas,163.8,11,5,1,20.75175441116404 +Brett Gabbert,Miami (OH),162.9,14,2,0,3.920146548570542 +Jordan McCloud,James Madison,168.1,14,2,0,19.975142045454543 +Carson Beck,Georgia,163.8,12,3,1,15.485074626865671 +Jack Plummer,Louisville,153.2,13,1,1,12.010369640535282 +Sam Hartman,Notre Dame,166.9,18,2,1,15.199267174586778 +Drake Maye,North Carolina,159.1,12,4,1,21.284646674865197 +JT Daniels,Rice,157.4,15,0,0,1.0250516408591794 +Spencer Rattler,South Carolina,163.3,11,2,1,1.2742037978468896 +D.J. Uiagalelei,Oregon State,158.9,15,5,1,14.987510612382634 +Keyone Jenkins,Florida International,133.5,5,4,0,0.618658613936305 +Garrett Greene,West Virginia,143.7,6,5,1,5.763090676883778 +Zeon Chriss,Louisiana,159.7,7,5,0,2.5762195121951215 +TJ Finley,Texas State,160.5,14,3,0,3.075065664479112 +Bo Nix,Oregon,178.2,17,1,1,10.974942044357128 +Cooper Legas,Utah State,159.7,13,0,0,1.8086380318333217 +Darren Grainger,Georgia State,154.4,8,5,0,9.702508336771178 +Graham Mertz,Florida,163.7,12,2,1,5.004320683556366 +Cameron Ward,Washington State,159.8,14,3,1,6.126747240028489 +Gunnar Watson,Troy,144.8,11,0,0,9.012728683930499 +Grayson McCall,Coastal Carolina,143.9,8,1,0,2.9700185403318238 +Haynes King,Georgia Tech,155.4,16,2,1,2.6717275943396226 +Grant Wilson,Old Dominion,134.8,7,1,0,1.1267314721369597 +Chandler Rogers,North Texas,155.8,12,3,0,0.9459459459459462 +Carter Bradley,South Alabama,149.2,11,1,0,2.035137287621359 +Jordan Travis,Florida State,154.1,13,4,1,23.00141752921983 +Jayden Maiava,UNLV,140.3,5,1,0,6.340255400405775 +Shedeur Sanders,Colorado,160.3,21,3,1,3.3095043052368793 +Dante Moore,UCLA,129.8,10,0,1,9.983896940418676 +DeQuan Finn,Toledo,149.3,12,4,0,3.4537886646609453 +Seth Henigan,Memphis,144.7,13,3,0,5.452094625112917 +Joey Aguilar,Appalachian State,144.5,14,1,0,1.9296139171269242 +Brayden Fowler-Nicolosi,Colorado State,137.7,14,1,0,1.4417531718569778 +Taulia Tagovailoa,Maryland,146.0,16,4,1,4.004389579822285 +K.J. Jefferson,Arkansas,148.9,14,1,1,0.541213949654249 +Garrett Shrader,Syracuse,135.5,8,6,1,3.591105011169142 +Dylan Hopkins,New Mexico,130.4,7,1,0,0.298408819083788 +Ashton Daniels,Stanford,139.6,7,0,1,0.7859639513429152 +Chandler Morris,TCU,144.6,12,3,1,3.7084461597614493 +Noah Fifita,Arizona,156.7,8,0,1,3.4744936096058257 +Max Johnson,Texas A&M,133.5,7,1,1,3.307061073261007 +Jacob Zeno,UAB,148.3,12,4,0,0.40883006949742523 +Will Rogers,Mississippi State,138.7,10,0,1,1.602176870748299 +Thomas Castellanos,Boston College,135.5,10,7,1,2.5212681708644276 +Preston Stone,SMU,137.6,14,1,0,3.484857682635864 +Mikey Keene,Fresno State,147.7,15,0,0,4.465065626028063 +Byrum Brown,South Florida,133.9,12,7,0,1.4834943682158241 +Chevan Cordeiro,San Jose State,130.4,8,3,0,0.43959378759469797 +Donovan Smith,Houston,144.5,13,4,1,1.3569846082089552 +Phil Jurkovec,Pitt,124.6,6,1,1,0.5460516122693451 +Brayden Schager,Hawaii,137.8,17,1,0,0.3126073895065902 +Luke Altmyer,Illinois,127.7,8,3,1,1.8241426642919532 +Cam Fancher,Marshall,135.0,7,2,0,4.750060178127255 +Will Howard,Kansas State,130.6,9,6,1,7.379528677010535 +Mitch Griffis,Wake Forest,129.8,9,0,1,1.4392148740192017 +Riley Leonard,Duke,129.8,3,4,1,16.525516391324228 +Nicholas Vattiato,Middle Tennessee State,137.4,11,2,0,0.4310847491706042 +Rocco Becht,Iowa State,134.4,12,2,1,5.310806554517334 +Devin Leary,Kentucky,130.2,14,1,1,5.820780693229675 +Emory Jones,Cincinnati,131.2,11,3,1,0.8282001201923075 +Tayven Jackson,Indiana,118.3,2,1,1,0.6737526165150155 +Kedon Slovis,Brigham Young,128.1,10,3,1,2.71911029486787 +Rocky Lombardi,Northern Illinois,123.4,6,2,0,1.1935816216927155 +Kyron Drones,Virginia Tech,128.3,6,4,1,1.3726528468543207 +Taylen Green,Boise State,116.1,5,4,0,1.4237558654926838 +Jack Turner,Louisiana Tech,121.1,5,2,0,0.3865979381443298 +Jalen Mayden,San Diego State,125.1,6,3,0,1.5487259992754496 +Joe Milton,Tennessee,133.6,10,3,1,10.950425091911764 +Drew Allar,Penn State,145.3,12,3,1,24.810970139689864 +Kurtis Rourke,Ohio,131.7,8,2,0,3.418116014878859 +Ta'Quan Roberson,Connecticut,131.6,7,1,0,0.07637773686890442 +Austin Reed,Western Kentucky,134.2,14,3,0,4.995477883931683 +Noah Kim,Michigan State,119.0,6,0,1,0.9758874520779282 +Andrew Peasley,Wyoming,141.6,12,4,0,9.107826346139213 +Michael Alaimo,Kent State,111.2,2,1,0,0.035410592808551994 +Hudson Card,Purdue,121.1,7,3,1,0.5990409401488118 +Heinrich Haarberg,Nebraska,116.9,4,3,1,2.2462277091906726 +Davis Brin,Georgia Southern,130.3,12,1,0,3.1488850344069195 +Cade Klubnik,Clemson,135.4,11,3,1,8.347862188230616 +Gavin Wimsatt,Rutgers,114.2,7,4,1,6.405312421763326 +E.J. Warner,Temple,121.3,12,0,0,0.21086421327107283 +Jase Bauer,Central Michigan,112.2,4,7,0,2.099125364431487 +Payton Thorne,Auburn,118.6,4,2,1,2.153921072839992 +Billy Wiles,Southern Mississippi,112.7,7,1,0,0.08553542818445446 +Tanner Mordecai,Wisconsin,118.8,3,4,1,6.393294608234562 +Alan Bowman,Oklahoma State,112.6,4,1,1,6.270821085635898 +Brennan Armstrong,North Carolina State,112.5,5,3,1,4.095803331129478 +Daniel Richardson,Florida Atlantic,121.7,5,0,0,2.0897284533648164 +Jiya Wright,Louisiana-Monroe,114.1,6,1,0,0.45108611448337194 +Athan Kaliakmanis,Minnesota,110.8,6,2,1,3.5997308612440193 +Austin Smith,Eastern Michigan,114.5,6,1,0,1.1695764438716405 +Ben Bryant,Northwestern,115.9,6,2,1,2.9203424043062203 Brendon Lewis,Nevada,102.4,2,3,0,0.0 -Cole Snyder,Buffalo,116.7,11,1,0,7.142857142857142 -Alex Flinn,East Carolina,85.5,1,0,0,4.166666666666666 +Cole Snyder,Buffalo,116.7,11,1,0,0.3553316852262804 +Alex Flinn,East Carolina,85.5,1,0,0,0.07646706398007125 diff --git a/Shiny_App/Weekly_Data.csv b/Shiny_App/Weekly_Data.csv index d047044..5295ae7 100644 --- a/Shiny_App/Weekly_Data.csv +++ b/Shiny_App/Weekly_Data.csv @@ -1,108 +1,110 @@ Player,School,Passing_Rate,Passing_TD,Rushing_TD,Power5,CPI -Jayden Daniels,LSU,197.7,22,4,1,17.857142857142858 -Michael Penix Jr.,Washington,189.9,20,0,1,25.0 -J.J. McCarthy,Michigan,195.9,14,3,1,25.0 -Jalen Milroe,Alabama,174.7,11,5,1,21.428571428571427 -Timmy Mcclain,UCF,177.7,9,1,1,12.5 -Kaidon Salter,Liberty,175.6,14,6,0,25.0 -Caleb Williams,USC,187.0,23,6,1,21.428571428571427 -Jaxson Dart,Ole Miss,167.8,12,4,1,20.833333333333336 -Diego Pavia,New Mexico State,167.0,14,2,0,14.285714285714285 -Kyle McCord,Ohio State,165.9,11,0,1,25.0 -Dillon Gabriel,Oklahoma,178.2,16,5,1,25.0 -Brady Cook,Missouri,168.7,14,4,1,21.428571428571427 -Tyler Van Dyke,Miami (FL),171.8,16,1,1,16.666666666666664 -Cardell Williams,Tulsa,151.6,8,3,0,12.5 -Quinn Ewers,Texas,163.8,11,5,1,20.833333333333336 -Brett Gabbert,Miami (OH),162.9,14,2,0,21.428571428571427 -Jordan McCloud,James Madison,168.1,14,2,0,25.0 -Carson Beck,Georgia,163.8,12,3,1,25.0 -Jack Plummer,Louisville,153.2,13,1,1,21.428571428571427 -Sam Hartman,Notre Dame,166.9,18,2,1,18.75 -Drake Maye,North Carolina,159.1,12,4,1,25.0 -JT Daniels,Rice,157.4,15,0,0,12.5 -Spencer Rattler,South Carolina,163.3,11,2,1,8.333333333333332 -D.J. Uiagalelei,Oregon State,158.9,15,5,1,21.428571428571427 -Keyone Jenkins,Florida International,133.5,5,4,0,10.714285714285714 -Garrett Greene,West Virginia,143.7,6,5,1,16.666666666666664 -Zeon Chriss,Louisiana,159.7,7,5,0,16.666666666666664 -TJ Finley,Texas State,160.5,14,3,0,17.857142857142858 -Bo Nix,Oregon,178.2,17,1,1,20.833333333333336 -Cooper Legas,Utah State,159.7,13,0,0,10.714285714285714 -Darren Grainger,Georgia State,154.4,8,5,0,20.833333333333336 -Graham Mertz,Florida,163.7,12,2,1,17.857142857142858 -Cameron Ward,Washington State,159.8,14,3,1,16.666666666666664 -Gunnar Watson,Troy,144.8,11,0,0,17.857142857142858 -Grayson McCall,Coastal Carolina,143.9,8,1,0,12.5 -Haynes King,Georgia Tech,155.4,16,2,1,12.5 -Grant Wilson,Old Dominion,134.8,7,1,0,12.5 -Chandler Rogers,North Texas,155.8,12,3,0,12.5 -Carter Bradley,South Alabama,149.2,11,1,0,12.5 -Jordan Travis,Florida State,154.1,13,4,1,25.0 -Shedeur Sanders,Colorado,160.3,21,3,1,14.285714285714285 -Dante Moore,UCLA,129.8,10,0,1,16.666666666666664 -DeQuan Finn,Toledo,149.3,12,4,0,21.428571428571427 -Seth Henigan,Memphis,144.7,13,3,0,16.666666666666664 -Joey Aguilar,Appalachian State,144.5,14,1,0,12.5 -Brayden Fowler-Nicolosi,Colorado State,137.7,14,1,0,12.5 -Taulia Tagovailoa,Maryland,146.0,16,4,1,17.857142857142858 -K.J. Jefferson,Arkansas,148.9,14,1,1,7.142857142857142 -Garrett Shrader,Syracuse,135.5,8,6,1,14.285714285714285 -Dylan Hopkins,New Mexico,130.4,7,1,0,8.333333333333332 -Ashton Daniels,Stanford,139.6,7,0,1,8.333333333333332 -Noah Fifita,Arizona,156.7,8,0,1,14.285714285714285 -Max Johnson,Texas A&M,133.5,7,1,1,14.285714285714285 -Jacob Zeno,UAB,148.3,12,4,0,7.142857142857142 -Will Rogers,Mississippi State,138.7,10,0,1,12.5 -Thomas Castellanos,Boston College,135.5,10,7,1,12.5 -Preston Stone,SMU,137.6,14,1,0,16.666666666666664 -Mikey Keene,Fresno State,147.7,15,0,0,21.428571428571427 -Byrum Brown,South Florida,133.9,12,7,0,10.714285714285714 -Chevan Cordeiro,San Jose State,130.4,8,3,0,7.142857142857142 -Donovan Smith,Houston,144.5,13,4,1,12.5 -Phil Jurkovec,Pitt,124.6,6,1,1,8.333333333333332 -Brayden Schager,Hawaii,137.8,17,1,0,7.142857142857142 -Luke Altmyer,Illinois,127.7,8,3,1,10.714285714285714 -Cam Fancher,Marshall,135.0,7,2,0,16.666666666666664 -Will Howard,Kansas State,130.6,9,6,1,16.666666666666664 -Mitch Griffis,Wake Forest,129.8,9,0,1,12.5 -Riley Leonard,Duke,129.8,3,4,1,20.833333333333336 -Nicholas Vattiato,Middle Tennessee State,137.4,11,2,0,7.142857142857142 -Rocco Becht,Iowa State,134.4,12,2,1,14.285714285714285 -Devin Leary,Kentucky,130.2,14,1,1,17.857142857142858 -Emory Jones,Cincinnati,131.2,11,3,1,8.333333333333332 -Tayven Jackson,Indiana,118.3,2,1,1,8.333333333333332 -Rocky Lombardi,Northern Illinois,123.4,6,2,0,10.714285714285714 -Kyron Drones,Virginia Tech,128.3,6,4,1,10.714285714285714 -Taylen Green,Boise State,116.1,5,4,0,10.714285714285714 -Jack Turner,Louisiana Tech,121.1,5,2,0,9.375 -Jalen Mayden,San Diego State,125.1,6,3,0,10.714285714285714 -Joe Milton,Tennessee,133.6,10,3,1,20.833333333333336 -Drew Allar,Penn State,145.3,12,3,1,25.0 -Kurtis Rourke,Ohio,131.7,8,2,0,17.857142857142858 -Ta'Quan Roberson,Connecticut,131.6,7,1,0,4.166666666666666 -Austin Reed,Western Kentucky,134.2,14,3,0,16.666666666666664 -Noah Kim,Michigan State,119.0,6,0,1,8.333333333333332 -Andrew Peasley,Wyoming,141.6,12,4,0,17.857142857142858 -Michael Alaimo,Kent State,111.2,2,1,0,3.571428571428571 -Hudson Card,Purdue,121.1,7,3,1,7.142857142857142 -Heinrich Haarberg,Nebraska,116.9,4,3,1,12.5 -Davis Brin,Georgia Southern,130.3,12,1,0,16.666666666666664 -Cade Klubnik,Clemson,135.4,11,3,1,16.666666666666664 -Gavin Wimsatt,Rutgers,114.2,7,4,1,17.857142857142858 -E.J. Warner,Temple,121.3,12,0,0,7.142857142857142 -Jase Bauer,Central Michigan,112.2,4,7,0,14.285714285714285 -Payton Thorne,Auburn,118.6,4,2,1,12.5 -Billy Wiles,Southern Mississippi,112.7,7,1,0,4.166666666666666 -Tanner Mordecai,Wisconsin,118.8,3,4,1,16.666666666666664 -Alan Bowman,Oklahoma State,112.6,4,1,1,16.666666666666664 -Brennan Armstrong,North Carolina State,112.5,5,3,1,14.285714285714285 -Daniel Richardson,Florida Atlantic,121.7,5,0,0,12.5 -Jiya Wright,Louisiana-Monroe,114.1,6,1,0,8.333333333333332 -Athan Kaliakmanis,Minnesota,110.8,6,2,1,12.5 -Keegan Shoemaker,Sam Houston,116.2,6,0,0,0.0 -Austin Smith,Eastern Michigan,114.5,6,1,0,14.285714285714285 -Ben Bryant,Northwestern,115.9,6,2,1,12.5 +Jayden Daniels,LSU,197.7,22,4,1,9.996470516382256 +Michael Penix Jr.,Washington,189.9,20,0,1,22.69695237105186 +J.J. McCarthy,Michigan,195.9,14,3,1,21.270050538343227 +Jalen Milroe,Alabama,174.7,11,5,1,13.570723302000426 +Timmy Mcclain,UCF,177.7,9,1,1,1.6849078341013826 +Kaidon Salter,Liberty,175.6,14,6,0,12.20981023988543 +Caleb Williams,USC,187.0,23,6,1,8.420336946119777 +Jaxson Dart,Ole Miss,167.8,12,4,1,17.703387784662432 +Diego Pavia,New Mexico State,167.0,14,2,0,0.7450503077325233 +Kyle McCord,Ohio State,165.9,11,0,1,26.14413878407365 +Dillon Gabriel,Oklahoma,178.2,16,5,1,27.715560317738326 +Brady Cook,Missouri,168.7,14,4,1,16.729790617545717 +Tyler Van Dyke,Miami (FL),171.8,16,1,1,5.311439268232076 +Cardell Williams,Tulsa,151.6,8,3,0,2.171415441176471 +Quinn Ewers,Texas,163.8,11,5,1,20.75175441116404 +Brett Gabbert,Miami (OH),162.9,14,2,0,3.920146548570542 +Jordan McCloud,James Madison,168.1,14,2,0,19.975142045454543 +Carson Beck,Georgia,163.8,12,3,1,15.485074626865671 +Jack Plummer,Louisville,153.2,13,1,1,12.010369640535282 +Sam Hartman,Notre Dame,166.9,18,2,1,15.199267174586778 +Drake Maye,North Carolina,159.1,12,4,1,21.284646674865197 +JT Daniels,Rice,157.4,15,0,0,1.0250516408591794 +Spencer Rattler,South Carolina,163.3,11,2,1,1.2742037978468896 +D.J. Uiagalelei,Oregon State,158.9,15,5,1,14.987510612382634 +Keyone Jenkins,Florida International,133.5,5,4,0,0.618658613936305 +Garrett Greene,West Virginia,143.7,6,5,1,5.763090676883778 +Zeon Chriss,Louisiana,159.7,7,5,0,2.5762195121951215 +TJ Finley,Texas State,160.5,14,3,0,3.075065664479112 +Bo Nix,Oregon,178.2,17,1,1,10.974942044357128 +Cooper Legas,Utah State,159.7,13,0,0,1.8086380318333217 +Darren Grainger,Georgia State,154.4,8,5,0,9.702508336771178 +Graham Mertz,Florida,163.7,12,2,1,5.004320683556366 +Cameron Ward,Washington State,159.8,14,3,1,6.126747240028489 +Gunnar Watson,Troy,144.8,11,0,0,9.012728683930499 +Grayson McCall,Coastal Carolina,143.9,8,1,0,2.9700185403318238 +Haynes King,Georgia Tech,155.4,16,2,1,2.6717275943396226 +Grant Wilson,Old Dominion,134.8,7,1,0,1.1267314721369597 +Chandler Rogers,North Texas,155.8,12,3,0,0.9459459459459462 +Carter Bradley,South Alabama,149.2,11,1,0,2.035137287621359 +Jordan Travis,Florida State,154.1,13,4,1,23.00141752921983 +Jayden Maiava,UNLV,140.3,5,1,0,6.340255400405775 +Shedeur Sanders,Colorado,160.3,21,3,1,3.3095043052368793 +Dante Moore,UCLA,129.8,10,0,1,9.983896940418676 +DeQuan Finn,Toledo,149.3,12,4,0,3.4537886646609453 +Seth Henigan,Memphis,144.7,13,3,0,5.452094625112917 +Joey Aguilar,Appalachian State,144.5,14,1,0,1.9296139171269242 +Brayden Fowler-Nicolosi,Colorado State,137.7,14,1,0,1.4417531718569778 +Taulia Tagovailoa,Maryland,146.0,16,4,1,4.004389579822285 +K.J. Jefferson,Arkansas,148.9,14,1,1,0.541213949654249 +Garrett Shrader,Syracuse,135.5,8,6,1,3.591105011169142 +Dylan Hopkins,New Mexico,130.4,7,1,0,0.298408819083788 +Ashton Daniels,Stanford,139.6,7,0,1,0.7859639513429152 +Chandler Morris,TCU,144.6,12,3,1,3.7084461597614493 +Noah Fifita,Arizona,156.7,8,0,1,3.4744936096058257 +Max Johnson,Texas A&M,133.5,7,1,1,3.307061073261007 +Jacob Zeno,UAB,148.3,12,4,0,0.40883006949742523 +Will Rogers,Mississippi State,138.7,10,0,1,1.602176870748299 +Thomas Castellanos,Boston College,135.5,10,7,1,2.5212681708644276 +Preston Stone,SMU,137.6,14,1,0,3.484857682635864 +Mikey Keene,Fresno State,147.7,15,0,0,4.465065626028063 +Byrum Brown,South Florida,133.9,12,7,0,1.4834943682158241 +Chevan Cordeiro,San Jose State,130.4,8,3,0,0.43959378759469797 +Donovan Smith,Houston,144.5,13,4,1,1.3569846082089552 +Phil Jurkovec,Pitt,124.6,6,1,1,0.5460516122693451 +Brayden Schager,Hawaii,137.8,17,1,0,0.3126073895065902 +Luke Altmyer,Illinois,127.7,8,3,1,1.8241426642919532 +Cam Fancher,Marshall,135.0,7,2,0,4.750060178127255 +Will Howard,Kansas State,130.6,9,6,1,7.379528677010535 +Mitch Griffis,Wake Forest,129.8,9,0,1,1.4392148740192017 +Riley Leonard,Duke,129.8,3,4,1,16.525516391324228 +Nicholas Vattiato,Middle Tennessee State,137.4,11,2,0,0.4310847491706042 +Rocco Becht,Iowa State,134.4,12,2,1,5.310806554517334 +Devin Leary,Kentucky,130.2,14,1,1,5.820780693229675 +Emory Jones,Cincinnati,131.2,11,3,1,0.8282001201923075 +Tayven Jackson,Indiana,118.3,2,1,1,0.6737526165150155 +Kedon Slovis,Brigham Young,128.1,10,3,1,2.71911029486787 +Rocky Lombardi,Northern Illinois,123.4,6,2,0,1.1935816216927155 +Kyron Drones,Virginia Tech,128.3,6,4,1,1.3726528468543207 +Taylen Green,Boise State,116.1,5,4,0,1.4237558654926838 +Jack Turner,Louisiana Tech,121.1,5,2,0,0.3865979381443298 +Jalen Mayden,San Diego State,125.1,6,3,0,1.5487259992754496 +Joe Milton,Tennessee,133.6,10,3,1,10.950425091911764 +Drew Allar,Penn State,145.3,12,3,1,24.810970139689864 +Kurtis Rourke,Ohio,131.7,8,2,0,3.418116014878859 +Ta'Quan Roberson,Connecticut,131.6,7,1,0,0.07637773686890442 +Austin Reed,Western Kentucky,134.2,14,3,0,4.995477883931683 +Noah Kim,Michigan State,119.0,6,0,1,0.9758874520779282 +Andrew Peasley,Wyoming,141.6,12,4,0,9.107826346139213 +Michael Alaimo,Kent State,111.2,2,1,0,0.035410592808551994 +Hudson Card,Purdue,121.1,7,3,1,0.5990409401488118 +Heinrich Haarberg,Nebraska,116.9,4,3,1,2.2462277091906726 +Davis Brin,Georgia Southern,130.3,12,1,0,3.1488850344069195 +Cade Klubnik,Clemson,135.4,11,3,1,8.347862188230616 +Gavin Wimsatt,Rutgers,114.2,7,4,1,6.405312421763326 +E.J. Warner,Temple,121.3,12,0,0,0.21086421327107283 +Jase Bauer,Central Michigan,112.2,4,7,0,2.099125364431487 +Payton Thorne,Auburn,118.6,4,2,1,2.153921072839992 +Billy Wiles,Southern Mississippi,112.7,7,1,0,0.08553542818445446 +Tanner Mordecai,Wisconsin,118.8,3,4,1,6.393294608234562 +Alan Bowman,Oklahoma State,112.6,4,1,1,6.270821085635898 +Brennan Armstrong,North Carolina State,112.5,5,3,1,4.095803331129478 +Daniel Richardson,Florida Atlantic,121.7,5,0,0,2.0897284533648164 +Jiya Wright,Louisiana-Monroe,114.1,6,1,0,0.45108611448337194 +Athan Kaliakmanis,Minnesota,110.8,6,2,1,3.5997308612440193 +Austin Smith,Eastern Michigan,114.5,6,1,0,1.1695764438716405 +Ben Bryant,Northwestern,115.9,6,2,1,2.9203424043062203 Brendon Lewis,Nevada,102.4,2,3,0,0.0 -Cole Snyder,Buffalo,116.7,11,1,0,7.142857142857142 -Alex Flinn,East Carolina,85.5,1,0,0,4.166666666666666 +Cole Snyder,Buffalo,116.7,11,1,0,0.3553316852262804 +Alex Flinn,East Carolina,85.5,1,0,0,0.07646706398007125 diff --git a/docs/app.json b/docs/app.json index 9f2f019..4a58148 100644 --- a/docs/app.json +++ b/docs/app.json @@ -1 +1 @@ -[{"name": "app.py", "content": "from shiny import App, ui, render\nimport pandas as pd\nimport numpy as np\nimport pickle\nimport statsmodels.api as sm\nfrom shinywidgets import output_widget, render_widget\nimport plotly.express as px\nfrom pathlib import Path\n\nmodel_path = Path(__file__).parent / \"heisman_model.pkl\"\nmodel_data_path = Path(__file__).parent / \"Model_Data.csv\"\nweekly_data_path = Path(__file__).parent / \"Weekly_Data.csv\"\n\nmodel = pickle.load(open(model_path, 'rb'))\n################### Historical #########################\nmodel_data = pd.read_csv(model_data_path).reset_index(drop = True)\n\npredict_data = model_data[['Passing_Rate', 'Passing_TD', 'Rushing_TD', 'Power5', 'CPI']]\npredict_data = sm.tools.add_constant(predict_data)\npredict_data['Prediction'] = model.predict(predict_data)\npredict_data = predict_data['Prediction']\n\nmodel_data = pd.merge(model_data, predict_data, left_index=True, right_index=True)\nmodel_data['CPI'] = model_data['CPI'].round(2)\nmodel_data['Prediction'] = model_data['Prediction'].round(2)\n\n################### Current #########################\ncurrent_df = pd.read_csv(weekly_data_path).reset_index(drop = True)\n\ncurrent_predict_df = current_df[['Passing_Rate', 'Passing_TD', 'Rushing_TD', 'Power5', 'CPI']]\ncurrent_predict_df = sm.tools.add_constant(current_predict_df)\ncurrent_predict_df['Projected Voting Points'] = model.predict(current_predict_df)\ncurrent_predict_df = current_predict_df['Projected Voting Points']\n\ncurrent_df = pd.merge(current_df, current_predict_df, left_index=True, right_index=True)\ncurrent_df['CPI'] = current_df['CPI'].round(2)\ncurrent_df['Projected Voting Points'] = current_df['Projected Voting Points'].round(2)\n\n\n# Part 1: ui ----\napp_ui = ui.page_fluid(\n ui.navset_tab(\n ui.nav(\"Model Details\", \n \n ui.markdown(\n \"\"\"\n # So how does this model work anyway?\n This is a project that I spent the summer of 2020 on in my free time.\n
\n\n Simply put, the model aims to predict the finals standings in Heisman voting for quarterbacks\n specifically. This is mostly because it is difficult to come up with a sample of metrics that apply\n to the different positions across college football.\n
\n\n The model itself is a linear regression with voting points as a response, and individual and team\n statitistics as the predictors. The model is built with training data from the 2006 to 2018 seasons.\n
\n\n The model is made up of the following 5 predictors;\n
\n \n **Passer Rating** : Passer efficency rating as according to pro-football-reference.com.\n
\n\n **Passing TDs** : Number of passing touchdowns thrown by a quarterback.\n
\n\n **Rushing TDs** : Number of rushing touchdowns ran by a quarterback.\n
\n\n **Power 5 Indicator** : A binary value of 0 or 1. Set equal to 1, \n if the quarterback's team plays in a power 5 conference. Otherwise 0. Notre Dame is the only independent team \n to receive a power 5 label.\n
\n\n **CPI** : A team strength of record metric involving the winning percentages of opponents. More details \n of the metric can be found at www.cpiratings.com/about.html.\n \"\"\"\n )\n ),\n ui.nav(\"Past Model Results\", \n \n ui.input_select(\"model_year\", \"Model Year\", model_data['Year'].tolist()),\n ui.output_table(\"historical_data\")\n ),\n\n ui.nav(\"Current Model Results\", \n \n ui.output_table(\"current_data\")\n ),\n \n ui.nav(\"What If\", \n \n ui.input_numeric(\"what_if_QBR\", \"Passer Rating\", value=0.0),\n ui.input_numeric(\"what_if_pass_TD\", \"Passing TDs\", value=0),\n ui.input_numeric(\"what_if_rush_TD\", \"Rushing TDs\", value=0),\n ui.input_radio_buttons(\"what_if_power_5\", \"Power 5 Conference\", {1 : \"Yes\", 0: \"No\"}),\n ui.input_numeric(\"what_if_CPI\", \"CPI\", value=0.0),\n ui.output_text(\"what_if_analysis\")\n ),\n \n ui.nav(\"Scatter\",\n ui.div(\n output_widget(\"my_widget\")\n )\n )\n )\n)\n\n\n\n\n# Part 2: server ----\ndef server(input, output, session):\n\n @output\n @render.table\n def historical_data():\n\n result_df = model_data[model_data['Year'] == int(input.model_year())]\n\n result_df['Actual_Rank'] = result_df['points_won'].rank(ascending = False).astype('int')\n result_df['Predicted_Rank'] = result_df['Prediction'].rank(ascending = False).astype('int')\n\n result_cols = ['Player', 'School', 'Actual_Rank', 'Predicted_Rank', 'Passing_Rate', 'Passing_TD', 'Rushing_TD', 'Power5', 'CPI']\n result_df = result_df[result_cols]\n\n return result_df\n \n @output\n @render.table\n def current_data():\n\n result_df = current_df\n\n result_df = result_df.sort_values(by = 'Projected Voting Points', ascending = False)\n result_df = result_df.reset_index(drop = True)\n result_df['Rank'] = result_df.index + 1\n result_cols = ['Rank', 'Player', 'School', 'Projected Voting Points', 'Passing_Rate', 'Passing_TD', 'Rushing_TD', 'Power5', 'CPI']\n result_df = result_df[result_cols]\n\n return result_df\n \n @output\n @render.text\n def what_if_analysis():\n\n what_if_df = pd.DataFrame({\n 'Passing_Rate' : [float(input.what_if_QBR())],\n 'Passing_TD' : [int(input.what_if_pass_TD())],\n 'Rushing_TD' : [int(input.what_if_rush_TD())],\n 'Power5' : [int(input.what_if_power_5())],\n 'CPI' : [float(input.what_if_CPI())]\n })\n\n what_if_df = sm.tools.add_constant(what_if_df, has_constant='add')\n\n what_if_df['Prediction'] = model.predict(what_if_df)\n\n result = what_if_df.iloc[0]['Prediction']\n result = result.round(2)\n\n return f\"A player with these statistics would have {result} projected voting points.\"\n \n @output\n @render_widget\n def my_widget():\n fig = px.scatter(\n model_data, x=\"Year\", y=\"Prediction\",\n hover_data=['Player']\n )\n return fig\n\n# Combine into a shiny app.\n# Note that the variable must be \"app\".\napp = App(app_ui, server)", "type": "text"}, {"name": "Model_Data.csv", "content": "Player,School,Year,points_won,Passing_Rate,Passing_TD,Rushing_TD,Power5,CPI\nTroy Smith,Ohio State,2006,2540,161.9,30,1,1,15.013680174870936\nBrady Quinn,Notre Dame,2006,782,146.7,37,2,1,8.231919146738909\nColt Brennan,Hawaii,2006,202,186.0,58,5,0,6.365435540069685\nTim Tebow,Florida,2007,1957,172.5,32,23,1,7.987912822160973\nColt Brennan,Hawaii,2007,632,159.8,38,8,0,7.5994759572849\nChase Daniel,Missouri,2007,425,147.9,33,4,1,11.748104548755686\nDennis Dixon,Oregon,2007,178,161.2,20,9,1,6.540100800550993\nPat White,West Virginia,2007,150,151.4,14,14,0,11.379512110196254\nMatt Ryan,Boston College,2007,63,127.0,31,2,1,8.768469146897912\nSam Bradford,Oklahoma,2008,1726,180.8,50,5,1,15.05704821146074\nColt McCoy,Texas,2008,1604,173.8,34,11,1,18.946208112380297\nTim Tebow,Florida,2008,1575,172.4,30,12,1,19.409963559776127\nGraham Harrell,Texas Tech,2008,213,160.0,45,6,1,13.05053009399466\nPat White,West Virginia,2008,19,142.3,21,8,0,6.385230641176652\nNate Davis,Ball State,2008,10,157.0,26,5,0,6.050702467936028\nColt McCoy,Texas,2009,1145,147.4,27,3,1,16.18331903502398\nTim Tebow,Florida,2009,390,164.2,21,14,1,18.51486090299109\nKellen Moore,Boise State,2009,100,161.7,39,1,0,14.46082921027991\nCase Keenum,Houston,2009,37,154.8,44,4,0,4.218052997436561\nCam Newton,Auburn,2010,2263,182.0,30,20,1,23.86780983482786\nAndrew Luck,Stanford,2010,1079,170.2,32,3,1,13.946308906421848\nKellen Moore,Boise State,2010,635,182.6,35,1,0,12.802241937566109\nDenard Robinson,Michigan,2010,84,149.6,18,14,1,3.2478886059804224\nRyan Mallett,Arkansas,2010,41,163.6,32,4,1,10.82973394387262\nColin Kaepernick,Nevada,2010,31,150.5,21,20,0,11.384387560083765\nAndy Dalton,TCU,2010,30,166.5,27,6,0,14.944350584507326\nRobert Griffin III,Baylor,2011,1687,189.5,37,10,1,10.316157413813375\nAndrew Luck,Stanford,2011,1407,169.7,37,2,1,9.667409405228565\nMatt Barkley,USC,2011,153,161.2,39,2,1,9.562203977574791\nCase Keenum,Houston,2011,123,174.0,48,3,0,11.420863535280626\nKellen Moore,Boise State,2011,90,175.2,43,0,0,12.265954369362133\nRussell Wilson,Wisconsin,2011,52,191.8,33,6,1,8.281890427937858\nJohnny Manziel,Texas A&M,2012,2029,155.3,26,21,1,15.754760156860875\nCollin Klein,Kansas State,2012,894,149.2,16,23,1,11.817693133497077\nBraxton Miller,Ohio State,2012,144,140.5,15,13,1,15.169148199200322\nJordan Lynch,Northern Illinois,2012,52,144.9,25,19,0,6.92703223246081\nJameis Winston,Florida State,2013,2205,184.8,40,4,1,19.32052650022246\nA.J. McCarron,Alabama,2013,704,167.2,28,0,1,11.90196866646686\nJordan Lynch,Northern Illinois,2013,558,138.4,24,23,0,7.111211920283987\nJohnny Manziel,Texas A&M,2013,421,172.9,37,9,1,8.051361094960829\nBryce Petty,Baylor,2013,127,174.3,32,14,1,11.402244928532845\nDerek Carr,Fresno State,2013,107,156.3,50,2,0,7.156147448813237\nBraxton Miller,Ohio State,2013,91,158.1,24,12,1,10.39338163747249\nMarcus Mariota,Oregon,2014,2534,181.7,42,15,1,16.12744333111277\nTrevone Boykin,TCU,2014,218,145.9,33,8,1,13.076626318134918\nJ.T. Barrett,Ohio State,2014,78,169.8,34,11,1,20.0747422358138\nJameis Winston,Florida State,2014,51,145.5,25,3,1,18.46103191334333\nDak Prescott,Mississippi State,2014,21,151.7,27,14,1,9.456126458240307\nDeshaun Watson,Clemson,2015,1165,156.3,35,12,1,19.16167854243615\nBaker Mayfield,Oklahoma,2015,334,173.3,36,7,1,12.740224517380366\nKeenan Reynolds,Navy,2015,180,162.1,8,24,0,10.128862442591032\nConnor Cook,Michigan State,2015,13,136.6,24,0,1,14.713371407886711\nLamar Jackson,Louisville,2016,2144,148.8,30,21,1,5.608782090662399\nDeshaun Watson,Clemson,2016,1524,151.1,41,9,1,23.78005620893973\nBaker Mayfield,Oklahoma,2016,361,196.4,40,6,1,11.25001891558911\nJake Browning,Washington,2016,182,167.5,43,4,1,12.923870541835983\nBaker Mayfield,Oklahoma,2017,2398,198.9,43,5,1,11.183099131224177\nLamar Jackson,Louisville,2017,793,146.6,27,18,1,3.9226957076095994\nMason Rudolph,Oklahoma State,2017,56,170.6,37,10,1,6.425405376500221\nMcKenzie Milton,UCF,2017,54,179.3,37,8,0,19.08379077956817\nKyler Murray,Oklahoma,2018,2167,199.2,42,12,1,12.942861869472573\nTua Tagovailoa,Alabama,2018,1871,199.4,43,5,1,20.688097541235337\nDwayne Haskins,Ohio State,2018,783,174.1,50,4,1,13.097950650643533\nWill Grier,West Virginia,2018,126,175.5,37,3,1,5.5749718367802\nGardner Minshew,Washington State,2018,122,147.6,38,4,1,10.593990104817577\nMcKenzie Milton,UCF,2018,39,161.0,25,9,0,11.842688493982308\nJoe Burrow,LSU,2019,2608,202.0,60,5,1,27.81090580974389\nJalen Hurts,Oklahoma,2019,762,191.2,32,20,1,11.86131918185052\nJustin Fields,Ohio State,2019,747,181.4,41,10,1,19.03510596761913\nTrevor Lawrence,Clemson,2019,88,166.7,36,9,1,17.71916867557893\n", "type": "text"}, {"name": "Weekly_Data.csv", "content": "Player,School,Passing_Rate,Passing_TD,Rushing_TD,Power5,CPI\nJayden Daniels,LSU,197.7,22,4,1,17.857142857142858\nMichael Penix Jr.,Washington,189.9,20,0,1,25.0\nJ.J. McCarthy,Michigan,195.9,14,3,1,25.0\nJalen Milroe,Alabama,174.7,11,5,1,21.428571428571427\nTimmy Mcclain,UCF,177.7,9,1,1,12.5\nKaidon Salter,Liberty,175.6,14,6,0,25.0\nCaleb Williams,USC,187.0,23,6,1,21.428571428571427\nJaxson Dart,Ole Miss,167.8,12,4,1,20.833333333333336\nDiego Pavia,New Mexico State,167.0,14,2,0,14.285714285714285\nKyle McCord,Ohio State,165.9,11,0,1,25.0\nDillon Gabriel,Oklahoma,178.2,16,5,1,25.0\nBrady Cook,Missouri,168.7,14,4,1,21.428571428571427\nTyler Van Dyke,Miami (FL),171.8,16,1,1,16.666666666666664\nCardell Williams,Tulsa,151.6,8,3,0,12.5\nQuinn Ewers,Texas,163.8,11,5,1,20.833333333333336\nBrett Gabbert,Miami (OH),162.9,14,2,0,21.428571428571427\nJordan McCloud,James Madison,168.1,14,2,0,25.0\nCarson Beck,Georgia,163.8,12,3,1,25.0\nJack Plummer,Louisville,153.2,13,1,1,21.428571428571427\nSam Hartman,Notre Dame,166.9,18,2,1,18.75\nDrake Maye,North Carolina,159.1,12,4,1,25.0\nJT Daniels,Rice,157.4,15,0,0,12.5\nSpencer Rattler,South Carolina,163.3,11,2,1,8.333333333333332\nD.J. Uiagalelei,Oregon State,158.9,15,5,1,21.428571428571427\nKeyone Jenkins,Florida International,133.5,5,4,0,10.714285714285714\nGarrett Greene,West Virginia,143.7,6,5,1,16.666666666666664\nZeon Chriss,Louisiana,159.7,7,5,0,16.666666666666664\nTJ Finley,Texas State,160.5,14,3,0,17.857142857142858\nBo Nix,Oregon,178.2,17,1,1,20.833333333333336\nCooper Legas,Utah State,159.7,13,0,0,10.714285714285714\nDarren Grainger,Georgia State,154.4,8,5,0,20.833333333333336\nGraham Mertz,Florida,163.7,12,2,1,17.857142857142858\nCameron Ward,Washington State,159.8,14,3,1,16.666666666666664\nGunnar Watson,Troy,144.8,11,0,0,17.857142857142858\nGrayson McCall,Coastal Carolina,143.9,8,1,0,12.5\nHaynes King,Georgia Tech,155.4,16,2,1,12.5\nGrant Wilson,Old Dominion,134.8,7,1,0,12.5\nChandler Rogers,North Texas,155.8,12,3,0,12.5\nCarter Bradley,South Alabama,149.2,11,1,0,12.5\nJordan Travis,Florida State,154.1,13,4,1,25.0\nShedeur Sanders,Colorado,160.3,21,3,1,14.285714285714285\nDante Moore,UCLA,129.8,10,0,1,16.666666666666664\nDeQuan Finn,Toledo,149.3,12,4,0,21.428571428571427\nSeth Henigan,Memphis,144.7,13,3,0,16.666666666666664\nJoey Aguilar,Appalachian State,144.5,14,1,0,12.5\nBrayden Fowler-Nicolosi,Colorado State,137.7,14,1,0,12.5\nTaulia Tagovailoa,Maryland,146.0,16,4,1,17.857142857142858\nK.J. Jefferson,Arkansas,148.9,14,1,1,7.142857142857142\nGarrett Shrader,Syracuse,135.5,8,6,1,14.285714285714285\nDylan Hopkins,New Mexico,130.4,7,1,0,8.333333333333332\nAshton Daniels,Stanford,139.6,7,0,1,8.333333333333332\nNoah Fifita,Arizona,156.7,8,0,1,14.285714285714285\nMax Johnson,Texas A&M,133.5,7,1,1,14.285714285714285\nJacob Zeno,UAB,148.3,12,4,0,7.142857142857142\nWill Rogers,Mississippi State,138.7,10,0,1,12.5\nThomas Castellanos,Boston College,135.5,10,7,1,12.5\nPreston Stone,SMU,137.6,14,1,0,16.666666666666664\nMikey Keene,Fresno State,147.7,15,0,0,21.428571428571427\nByrum Brown,South Florida,133.9,12,7,0,10.714285714285714\nChevan Cordeiro,San Jose State,130.4,8,3,0,7.142857142857142\nDonovan Smith,Houston,144.5,13,4,1,12.5\nPhil Jurkovec,Pitt,124.6,6,1,1,8.333333333333332\nBrayden Schager,Hawaii,137.8,17,1,0,7.142857142857142\nLuke Altmyer,Illinois,127.7,8,3,1,10.714285714285714\nCam Fancher,Marshall,135.0,7,2,0,16.666666666666664\nWill Howard,Kansas State,130.6,9,6,1,16.666666666666664\nMitch Griffis,Wake Forest,129.8,9,0,1,12.5\nRiley Leonard,Duke,129.8,3,4,1,20.833333333333336\nNicholas Vattiato,Middle Tennessee State,137.4,11,2,0,7.142857142857142\nRocco Becht,Iowa State,134.4,12,2,1,14.285714285714285\nDevin Leary,Kentucky,130.2,14,1,1,17.857142857142858\nEmory Jones,Cincinnati,131.2,11,3,1,8.333333333333332\nTayven Jackson,Indiana,118.3,2,1,1,8.333333333333332\nRocky Lombardi,Northern Illinois,123.4,6,2,0,10.714285714285714\nKyron Drones,Virginia Tech,128.3,6,4,1,10.714285714285714\nTaylen Green,Boise State,116.1,5,4,0,10.714285714285714\nJack Turner,Louisiana Tech,121.1,5,2,0,9.375\nJalen Mayden,San Diego State,125.1,6,3,0,10.714285714285714\nJoe Milton,Tennessee,133.6,10,3,1,20.833333333333336\nDrew Allar,Penn State,145.3,12,3,1,25.0\nKurtis Rourke,Ohio,131.7,8,2,0,17.857142857142858\nTa'Quan Roberson,Connecticut,131.6,7,1,0,4.166666666666666\nAustin Reed,Western Kentucky,134.2,14,3,0,16.666666666666664\nNoah Kim,Michigan State,119.0,6,0,1,8.333333333333332\nAndrew Peasley,Wyoming,141.6,12,4,0,17.857142857142858\nMichael Alaimo,Kent State,111.2,2,1,0,3.571428571428571\nHudson Card,Purdue,121.1,7,3,1,7.142857142857142\nHeinrich Haarberg,Nebraska,116.9,4,3,1,12.5\nDavis Brin,Georgia Southern,130.3,12,1,0,16.666666666666664\nCade Klubnik,Clemson,135.4,11,3,1,16.666666666666664\nGavin Wimsatt,Rutgers,114.2,7,4,1,17.857142857142858\nE.J. Warner,Temple,121.3,12,0,0,7.142857142857142\nJase Bauer,Central Michigan,112.2,4,7,0,14.285714285714285\nPayton Thorne,Auburn,118.6,4,2,1,12.5\nBilly Wiles,Southern Mississippi,112.7,7,1,0,4.166666666666666\nTanner Mordecai,Wisconsin,118.8,3,4,1,16.666666666666664\nAlan Bowman,Oklahoma State,112.6,4,1,1,16.666666666666664\nBrennan Armstrong,North Carolina State,112.5,5,3,1,14.285714285714285\nDaniel Richardson,Florida Atlantic,121.7,5,0,0,12.5\nJiya Wright,Louisiana-Monroe,114.1,6,1,0,8.333333333333332\nAthan Kaliakmanis,Minnesota,110.8,6,2,1,12.5\nKeegan Shoemaker,Sam Houston,116.2,6,0,0,0.0\nAustin Smith,Eastern Michigan,114.5,6,1,0,14.285714285714285\nBen Bryant,Northwestern,115.9,6,2,1,12.5\nBrendon Lewis,Nevada,102.4,2,3,0,0.0\nCole Snyder,Buffalo,116.7,11,1,0,7.142857142857142\nAlex Flinn,East Carolina,85.5,1,0,0,4.166666666666666\n", "type": "text"}, {"name": "heisman_model.pkl", "content": "gASVGDsAAAAAAACMI3N0YXRzbW9kZWxzLnJlZ3Jlc3Npb24ubGluZWFyX21vZGVslIwYUmVncmVzc2lvblJlc3VsdHNXcmFwcGVylJOUKYGUfZQojAhfcmVzdWx0c5RoAIwKT0xTUmVzdWx0c5STlCmBlH2UKIwGcGFyYW1zlIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBoWUaA6MBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMwEKe0LLHUqMCBOhzYBe0mQE+UaKKMZTRAprDxtdCxRkCRWmqPTkOBQC5Ah5baiUVAlHSUYowFbW9kZWyUaACMA09MU5STlCmBlH2UKIwHd2VpZ2h0c5RoDWgQSwCFlGgSh5RSlChLAUtChZRoGolCEAIAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwP5R0lGKMBGRhdGGUjBVzdGF0c21vZGVscy5iYXNlLmRhdGGUjApQYW5kYXNEYXRhlJOUKYGUfZQojApvcmlnX2VuZG9nlIwRcGFuZGFzLmNvcmUuZnJhbWWUjAlEYXRhRnJhbWWUk5QpgZR9lCiMBF9tZ3KUjB5wYW5kYXMuY29yZS5pbnRlcm5hbHMubWFuYWdlcnOUjAxCbG9ja01hbmFnZXKUk5SMFnBhbmRhcy5fbGlicy5pbnRlcm5hbHOUjA9fdW5waWNrbGVfYmxvY2uUk5RoDWgQSwCFlGgSh5RSlChLAUsBS0KGlGgXjAJpOJSJiIeUUpQoSwNoG05OTkr/////Sv////9LAHSUYolCEAIAAOwJAAAAAAAADgMAAAAAAADKAAAAAAAAAKUHAAAAAAAAeAIAAAAAAACpAQAAAAAAALIAAAAAAAAAlgAAAAAAAAA/AAAAAAAAAL4GAAAAAAAARAYAAAAAAAAnBgAAAAAAANUAAAAAAAAAEwAAAAAAAAAKAAAAAAAAAHkEAAAAAAAAhgEAAAAAAABkAAAAAAAAACUAAAAAAAAA1wgAAAAAAAA3BAAAAAAAAHsCAAAAAAAAVAAAAAAAAAApAAAAAAAAAB8AAAAAAAAAHgAAAAAAAACXBgAAAAAAAH8FAAAAAAAAmQAAAAAAAAB7AAAAAAAAAFoAAAAAAAAANAAAAAAAAADtBwAAAAAAAH4DAAAAAAAAkAAAAAAAAAA0AAAAAAAAAJ0IAAAAAAAAwAIAAAAAAAAuAgAAAAAAAKUBAAAAAAAAfwAAAAAAAABrAAAAAAAAAFsAAAAAAAAA5gkAAAAAAADaAAAAAAAAAE4AAAAAAAAAMwAAAAAAAAAVAAAAAAAAAI0EAAAAAAAATgEAAAAAAAC0AAAAAAAAAA0AAAAAAAAAYAgAAAAAAAD0BQAAAAAAAGkBAAAAAAAAtgAAAAAAAABeCQAAAAAAABkDAAAAAAAAOAAAAAAAAAA2AAAAAAAAAHcIAAAAAAAATwcAAAAAAAAPAwAAAAAAAH4AAAAAAAAAegAAAAAAAAAnAAAAAAAAAJR0lGKMCGJ1aWx0aW5zlIwFc2xpY2WUk5RLAEsBSwGHlFKUSwKHlFKUhZRdlCiMGHBhbmRhcy5jb3JlLmluZGV4ZXMuYmFzZZSMCl9uZXdfSW5kZXiUk5RoUYwFSW5kZXiUk5R9lChoK2gNaBBLAIWUaBKHlFKUKEsBSwGFlGgXjAJPOJSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0s/dJRiiV2UjApwb2ludHNfd29ulGF0lGKMBG5hbWWUTnWGlFKUaFOMG3BhbmRhcy5jb3JlLmluZGV4ZXMubnVtZXJpY5SMCkludDY0SW5kZXiUk5R9lChoK2gNaBBLAIWUaBKHlFKUKEsBS0KFlGhEiUIQAgAAAAAAAAAAAAABAAAAAAAAAAIAAAAAAAAAAwAAAAAAAAAEAAAAAAAAAAUAAAAAAAAABgAAAAAAAAAHAAAAAAAAAAgAAAAAAAAACQAAAAAAAAAKAAAAAAAAAAsAAAAAAAAADAAAAAAAAAANAAAAAAAAAA4AAAAAAAAADwAAAAAAAAAQAAAAAAAAABEAAAAAAAAAEgAAAAAAAAATAAAAAAAAABQAAAAAAAAAFQAAAAAAAAAWAAAAAAAAABcAAAAAAAAAGAAAAAAAAAAZAAAAAAAAABoAAAAAAAAAGwAAAAAAAAAcAAAAAAAAAB0AAAAAAAAAHgAAAAAAAAAfAAAAAAAAACAAAAAAAAAAIQAAAAAAAAAiAAAAAAAAACMAAAAAAAAAJAAAAAAAAAAlAAAAAAAAACYAAAAAAAAAJwAAAAAAAAAoAAAAAAAAACkAAAAAAAAAKgAAAAAAAAArAAAAAAAAACwAAAAAAAAALQAAAAAAAAAuAAAAAAAAAC8AAAAAAAAAMAAAAAAAAAAxAAAAAAAAADIAAAAAAAAAMwAAAAAAAAA0AAAAAAAAADUAAAAAAAAANgAAAAAAAAA3AAAAAAAAADgAAAAAAAAAOQAAAAAAAAA6AAAAAAAAADsAAAAAAAAAPAAAAAAAAAA9AAAAAAAAAD4AAAAAAAAAPwAAAAAAAABAAAAAAAAAAEEAAAAAAAAAlHSUYmhjTnWGlFKUZYaUUpSMBF90eXCUjAlkYXRhZnJhbWWUjAlfbWV0YWRhdGGUXZSMBWF0dHJzlH2UjAZfZmxhZ3OUfZSMF2FsbG93c19kdXBsaWNhdGVfbGFiZWxzlIhzdWKMCW9yaWdfZXhvZ5RoNCmBlH2UKGg3aDpoPWgNaBBLAIWUaBKHlFKUKEsBSwNLQoaUaBqJQjAGAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D/NzMzMzDxkQGZmZmZmVmJAAAAAAABAZ0AAAAAAAJBlQJqZmZmZ+WNAzczMzMx8YkBmZmZmZiZkQM3MzMzM7GJAAAAAAADAX0CamZmZmZlmQJqZmZmZuWVAzczMzMyMZUAAAAAAAABkQJqZmZmZyWFAAAAAAACgY0DNzMzMzGxiQGZmZmZmhmRAZmZmZmY2ZECamZmZmVljQAAAAAAAwGZAZmZmZmZGZUAzMzMzM9NmQDMzMzMzs2JAMzMzMzNzZEAAAAAAANBiQAAAAAAA0GRAAAAAAACwZ0BmZmZmZjZlQGZmZmZmJmRAAAAAAADAZUBmZmZmZuZlQJqZmZmZ+WdAmpmZmZlpY0BmZmZmZqZiQAAAAAAAkGFAzczMzMwcYkCamZmZmRlnQGZmZmZm5mRAzczMzMxMYUDNzMzMzJxlQJqZmZmZyWVAmpmZmZmJY0AzMzMzM8NjQGZmZmZmtmZAzczMzMw8YkCamZmZmTllQAAAAAAAMGJAZmZmZmb2YkCamZmZmYljQJqZmZmZqWVAMzMzMzNDZEAzMzMzMxNhQJqZmZmZmWJAMzMzMzPjYkDNzMzMzIxoQAAAAAAA8GRAzczMzMzcaEAzMzMzM1NiQDMzMzMzU2VAmpmZmZlpZkBmZmZmZuZoQM3MzMzM7GhAMzMzMzPDZUAAAAAAAPBlQDMzMzMzc2JAAAAAAAAgZEA1WX8WAQcuQKMePRu+diBA4pT1uzR2GUD56zlrn/MfQJYbfQbdZR5A/ck1jwd/J0DGoysvECkaQC11S2lPwiZAt9K7yXSJIUDRCVVsNR0uQB7i4bE68jJAS8oxX/NoM0B8V5oU3xkqQFUVteZ5ihlAaXIGWeszGECLKQz/7S4wQPRVlOzNgzJAL2NmzvHrLECjI/NISd8QQJq7C8ko3jdAoP3ZmYLkK0D4pop0v5opQEPlfQWt+wlAxaAy49KoJUAXGT9yzsQmQLzVeOuB4y1Aym5xYt+hJEC+/4CvtlUjQM26IjPZHyNA7TfgbHvXJkD/Rs0rK4goQNsYMvFTkCBAJBVc7G+CL0BCEaWsqKInQEB8v5eaVi5AOAcD8Ee1G0Dx9FMGDlIzQNr7SNbOzSdAKi6iieFxHEB6SV4ATBogQJQPGgzzzSZA2QboHeWfHEAilWdRackkQP84SyCgIDBAA86UkDsnKkBAc6JOIhM0QM84/i8GdjJAAfc5aInpIkBsOtTDYykzQC6xO7X+eilA6jgRQvpBJEDAjGUEP20tQF0kh5JkbxZAGXCCw7HHN0BYrLN6AoAmQMHYRY8F2SlAVRFZK79dJkATvoJJrmEPQK5xjnedsxlAnvMBUHMVM0BsD3zKvuIpQFQQFCknsDRAlEVyliYyKkA4XsxqxUwWQJ+tlHgfMCVAML3E3XSvJ0CUdJRiaA1oEEsAhZRoEoeUUpQoSwFLA4WUaESJQxgAAAAAAAAAAAEAAAAAAAAABQAAAAAAAACUdJRiSwKHlFKUaD1oDWgQSwCFlGgSh5RSlChLAUsDS0KGlGhEiUIwBgAAHgAAAAAAAAAlAAAAAAAAADoAAAAAAAAAIAAAAAAAAAAmAAAAAAAAACEAAAAAAAAAFAAAAAAAAAAOAAAAAAAAAB8AAAAAAAAAMgAAAAAAAAAiAAAAAAAAAB4AAAAAAAAALQAAAAAAAAAVAAAAAAAAABoAAAAAAAAAGwAAAAAAAAAVAAAAAAAAACcAAAAAAAAALAAAAAAAAAAeAAAAAAAAACAAAAAAAAAAIwAAAAAAAAASAAAAAAAAACAAAAAAAAAAFQAAAAAAAAAbAAAAAAAAACUAAAAAAAAAJQAAAAAAAAAnAAAAAAAAADAAAAAAAAAAKwAAAAAAAAAhAAAAAAAAABoAAAAAAAAAEAAAAAAAAAAPAAAAAAAAABkAAAAAAAAAKAAAAAAAAAAcAAAAAAAAABgAAAAAAAAAJQAAAAAAAAAgAAAAAAAAADIAAAAAAAAAGAAAAAAAAAAqAAAAAAAAACEAAAAAAAAAIgAAAAAAAAAZAAAAAAAAABsAAAAAAAAAIwAAAAAAAAAkAAAAAAAAAAgAAAAAAAAAGAAAAAAAAAAeAAAAAAAAACkAAAAAAAAAKAAAAAAAAAArAAAAAAAAACsAAAAAAAAAGwAAAAAAAAAlAAAAAAAAACUAAAAAAAAAKgAAAAAAAAArAAAAAAAAADIAAAAAAAAAJQAAAAAAAAAmAAAAAAAAABkAAAAAAAAAAQAAAAAAAAACAAAAAAAAAAUAAAAAAAAAFwAAAAAAAAAIAAAAAAAAAAQAAAAAAAAACQAAAAAAAAAOAAAAAAAAAAIAAAAAAAAABQAAAAAAAAALAAAAAAAAAAwAAAAAAAAABgAAAAAAAAAIAAAAAAAAAAUAAAAAAAAAAwAAAAAAAAAOAAAAAAAAAAEAAAAAAAAABAAAAAAAAAAUAAAAAAAAAAMAAAAAAAAAAQAAAAAAAAAOAAAAAAAAAAQAAAAAAAAAFAAAAAAAAAAGAAAAAAAAAAoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAAGAAAAAAAAABUAAAAAAAAAFwAAAAAAAAANAAAAAAAAABMAAAAAAAAABAAAAAAAAAAAAAAAAAAAABcAAAAAAAAACQAAAAAAAAAOAAAAAAAAAAIAAAAAAAAADAAAAAAAAAAPAAAAAAAAAAgAAAAAAAAACwAAAAAAAAADAAAAAAAAAA4AAAAAAAAADAAAAAAAAAAHAAAAAAAAABgAAAAAAAAAAAAAAAAAAAAVAAAAAAAAAAkAAAAAAAAABgAAAAAAAAAEAAAAAAAAAAUAAAAAAAAAEgAAAAAAAAAKAAAAAAAAAAgAAAAAAAAADAAAAAAAAAAFAAAAAAAAAAQAAAAAAAAAAwAAAAAAAAAEAAAAAAAAAAkAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAlHSUYmhKSwJLBUsBh5RSlEsCh5RSlIaUXZQoaFNoVX2UKGgraA1oEEsAhZRoEoeUUpQoSwFLBoWUaF2JXZQojAVjb25zdJSMDFBhc3NpbmdfUmF0ZZSMClBhc3NpbmdfVESUjApSdXNoaW5nX1RElIwGUG93ZXI1lIwDQ1BJlGV0lGJoY051hpRSlGhTaGh9lChoK2hsaGNOdYaUUpRlhpRSlGh0aHVodmh3aHh9lGh6fZRofIhzdWKMBWVuZG9nlGgNaBBLAIWUaBKHlFKUKEsBS0KFlGhEiUIQAgAA7AkAAAAAAAAOAwAAAAAAAMoAAAAAAAAApQcAAAAAAAB4AgAAAAAAAKkBAAAAAAAAsgAAAAAAAACWAAAAAAAAAD8AAAAAAAAAvgYAAAAAAABEBgAAAAAAACcGAAAAAAAA1QAAAAAAAAATAAAAAAAAAAoAAAAAAAAAeQQAAAAAAACGAQAAAAAAAGQAAAAAAAAAJQAAAAAAAADXCAAAAAAAADcEAAAAAAAAewIAAAAAAABUAAAAAAAAACkAAAAAAAAAHwAAAAAAAAAeAAAAAAAAAJcGAAAAAAAAfwUAAAAAAACZAAAAAAAAAHsAAAAAAAAAWgAAAAAAAAA0AAAAAAAAAO0HAAAAAAAAfgMAAAAAAACQAAAAAAAAADQAAAAAAAAAnQgAAAAAAADAAgAAAAAAAC4CAAAAAAAApQEAAAAAAAB/AAAAAAAAAGsAAAAAAAAAWwAAAAAAAADmCQAAAAAAANoAAAAAAAAATgAAAAAAAAAzAAAAAAAAABUAAAAAAAAAjQQAAAAAAABOAQAAAAAAALQAAAAAAAAADQAAAAAAAABgCAAAAAAAAPQFAAAAAAAAaQEAAAAAAAC2AAAAAAAAAF4JAAAAAAAAGQMAAAAAAAA4AAAAAAAAADYAAAAAAAAAdwgAAAAAAABPBwAAAAAAAA8DAAAAAAAAfgAAAAAAAAB6AAAAAAAAACcAAAAAAAAAlHSUYowEZXhvZ5RoDWgQSwCFlGgSh5RSlChLAUtCSwaGlGgaiEJgDAAAAAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/zczMzMw8ZEBmZmZmZlZiQAAAAAAAQGdAAAAAAACQZUCamZmZmfljQM3MzMzMfGJAZmZmZmYmZEDNzMzMzOxiQAAAAAAAwF9AmpmZmZmZZkCamZmZmbllQM3MzMzMjGVAAAAAAAAAZECamZmZmclhQAAAAAAAoGNAzczMzMxsYkBmZmZmZoZkQGZmZmZmNmRAmpmZmZlZY0AAAAAAAMBmQGZmZmZmRmVAMzMzMzPTZkAzMzMzM7NiQDMzMzMzc2RAAAAAAADQYkAAAAAAANBkQAAAAAAAsGdAZmZmZmY2ZUBmZmZmZiZkQAAAAAAAwGVAZmZmZmbmZUCamZmZmflnQJqZmZmZaWNAZmZmZmamYkAAAAAAAJBhQM3MzMzMHGJAmpmZmZkZZ0BmZmZmZuZkQM3MzMzMTGFAzczMzMycZUCamZmZmcllQJqZmZmZiWNAMzMzMzPDY0BmZmZmZrZmQM3MzMzMPGJAmpmZmZk5ZUAAAAAAADBiQGZmZmZm9mJAmpmZmZmJY0CamZmZmallQDMzMzMzQ2RAMzMzMzMTYUCamZmZmZliQDMzMzMz42JAzczMzMyMaEAAAAAAAPBkQM3MzMzM3GhAMzMzMzNTYkAzMzMzM1NlQJqZmZmZaWZAZmZmZmbmaEDNzMzMzOxoQDMzMzMzw2VAAAAAAADwZUAzMzMzM3NiQAAAAAAAIGRAAAAAAAAAPkAAAAAAAIBCQAAAAAAAAE1AAAAAAAAAQEAAAAAAAABDQAAAAAAAgEBAAAAAAAAANEAAAAAAAAAsQAAAAAAAAD9AAAAAAAAASUAAAAAAAABBQAAAAAAAAD5AAAAAAACARkAAAAAAAAA1QAAAAAAAADpAAAAAAAAAO0AAAAAAAAA1QAAAAAAAgENAAAAAAAAARkAAAAAAAAA+QAAAAAAAAEBAAAAAAACAQUAAAAAAAAAyQAAAAAAAAEBAAAAAAAAANUAAAAAAAAA7QAAAAAAAgEJAAAAAAACAQkAAAAAAAIBDQAAAAAAAAEhAAAAAAACARUAAAAAAAIBAQAAAAAAAADpAAAAAAAAAMEAAAAAAAAAuQAAAAAAAADlAAAAAAAAAREAAAAAAAAA8QAAAAAAAADhAAAAAAACAQkAAAAAAAABAQAAAAAAAAElAAAAAAAAAOEAAAAAAAABFQAAAAAAAgEBAAAAAAAAAQUAAAAAAAAA5QAAAAAAAADtAAAAAAACAQUAAAAAAAABCQAAAAAAAACBAAAAAAAAAOEAAAAAAAAA+QAAAAAAAgERAAAAAAAAAREAAAAAAAIBFQAAAAAAAgEVAAAAAAAAAO0AAAAAAAIBCQAAAAAAAgEJAAAAAAAAARUAAAAAAAIBFQAAAAAAAAElAAAAAAACAQkAAAAAAAABDQAAAAAAAADlAAAAAAAAA8D8AAAAAAAAAQAAAAAAAABRAAAAAAAAAN0AAAAAAAAAgQAAAAAAAABBAAAAAAAAAIkAAAAAAAAAsQAAAAAAAAABAAAAAAAAAFEAAAAAAAAAmQAAAAAAAAChAAAAAAAAAGEAAAAAAAAAgQAAAAAAAABRAAAAAAAAACEAAAAAAAAAsQAAAAAAAAPA/AAAAAAAAEEAAAAAAAAA0QAAAAAAAAAhAAAAAAAAA8D8AAAAAAAAsQAAAAAAAABBAAAAAAAAANEAAAAAAAAAYQAAAAAAAACRAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAhAAAAAAAAAAAAAAAAAAAAYQAAAAAAAADVAAAAAAAAAN0AAAAAAAAAqQAAAAAAAADNAAAAAAAAAEEAAAAAAAAAAAAAAAAAAADdAAAAAAAAAIkAAAAAAAAAsQAAAAAAAAABAAAAAAAAAKEAAAAAAAAAuQAAAAAAAACBAAAAAAAAAJkAAAAAAAAAIQAAAAAAAACxAAAAAAAAAKEAAAAAAAAAcQAAAAAAAADhAAAAAAAAAAAAAAAAAAAA1QAAAAAAAACJAAAAAAAAAGEAAAAAAAAAQQAAAAAAAABRAAAAAAAAAMkAAAAAAAAAkQAAAAAAAACBAAAAAAAAAKEAAAAAAAAAUQAAAAAAAABBAAAAAAAAACEAAAAAAAAAQQAAAAAAAACJAAAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAA8D8AAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAANVl/FgEHLkCjHj0bvnYgQOKU9bs0dhlA+es5a5/zH0CWG30G3WUeQP3JNY8HfydAxqMrLxApGkAtdUtpT8ImQLfSu8l0iSFA0QlVbDUdLkAe4uGxOvIyQEvKMV/zaDNAfFeaFN8ZKkBVFbXmeYoZQGlyBlnrMxhAiykM/+0uMED0VZTszYMyQC9jZs7x6yxAoyPzSEnfEECauwvJKN43QKD92ZmC5CtA+KaKdL+aKUBD5X0FrfsJQMWgMuPSqCVAFxk/cs7EJkC81XjrgeMtQMpucWLfoSRAvv+Ar7ZVI0DNuiIz2R8jQO034Gx71yZA/0bNKyuIKEDbGDLxU5AgQCQVXOxvgi9AQhGlrKiiJ0BAfL+XmlYuQDgHA/BHtRtA8fRTBg5SM0Da+0jWzs0nQCouoonhcRxAekleAEwaIECUDxoM880mQNkG6B3lnxxAIpVnUWnJJED/OEsgoCAwQAPOlJA7JypAQHOiTiITNEDPOP4vBnYyQAH3OWiJ6SJAbDrUw2MpM0AusTu1/nopQOo4EUL6QSRAwIxlBD9tLUBdJIeSZG8WQBlwgsOxxzdAWKyzegKAJkDB2EWPBdkpQFURWSu/XSZAE76CSa5hD0CucY53nbMZQJ7zAVBzFTNAbA98yr7iKUBUEBQpJ7A0QJRFcpYmMipAOF7MasVMFkCfrZR4HzAlQDC9xN10rydAlHSUYowJY29uc3RfaWR4lEsAjAprX2NvbnN0YW50lEsBjAZfY2FjaGWUfZR1Ymi/SwFot2i6aLBos4wKX2RhdGFfYXR0cpRdlChot2iwjAlkYXRhLmV4b2eUjApkYXRhLmVuZG9nlIwPZGF0YS5vcmlnX2VuZG9nlIwOZGF0YS5vcmlnX2V4b2eUjApwaW52X3dleG9nlIwGd2VuZG9nlIwFd2V4b2eUaCRljApfaW5pdF9rZXlzlF2UaMpoumjJaLOMBG5vYnOUR0BQgAAAAAAAjAlfZGZfbW9kZWyUR0AUAAAAAAAAjAlfZGZfcmVzaWSUaAuMBnNjYWxhcpSTlGgaQwgAAAAAAABOQJSGlFKUjARyYW5rlGjRaERDCAYAAAAAAAAAlIaUUpRoyGgNaBBLAIWUaBKHlFKUKEsBSwZLQoaUaBqJQmAMAABXkfiCQGOyP5oxtjp+qs0/v5nEOB1YwL+uVqUDEc7Dv62jsseM6LU/klxuGr7FyT81vivqZkSSP56A2/6Ffbg/ARthEHni2j9GFyrK0H+7vxhLHPMuFbm/WVsvBPiluL//4u9E7pi2P//u30I0380/PHjMCndRvD8yl72xLcrJPwQb2ehQeqS/3CngutRauz/RbqkpLJ7FP3YFRzFzhc6/iA3zMSsLlL9yA2VBjTq8v0k6Ni+qf7o/PanvShdLpT8Uyix5Cy+1P2x1BPvUtIQ/zpE+zBNQz79JJqSohXIUv8E/y+ARxLY/f4/dOTVair8wjfMDQPiQv5BHS+ryHdC/qjw4vXdokz8SJxNnyfqqP4UqbKcC6cg/jHEQLlFzwz+k4EwOFWXEv6EmzcnUf5U/GJfO9p67yD9brKTFX1Gyv57qevqvXr+/hGm7kohhxj8lVLR6dbyjPyOZHgvc2ce/wM7zrxl0yT8XlhUR6Zatv1PVgU7Yx8s/AkDUhOXOuD9IxPUcxQizP8KdTDHRA7G/rxIw/CgRtL8JjFkq4J/UPxIhSCIVl7c/UHu7ZZKewz8YTAfT0FjSv0nUbUpcHJU/bfT+5GNG079ubhR23CrAP6xgg0PRkqu/0RN0brkYvb+KR0wKuRvWv7DEs2n1p9O/Spy6IkF2ob/0s5+PTFGwv8En0OhBQMs/e2d2sZNUpz/iiJDm0rMhPyYXCHwnVFe/BMAetwSMLT/gr9dQhEdAP464QvwfST2/I7q6NwhQVL8ogQVBI6JSP/Vypwv5WkA/gxGBdG5nZb+BspOmTbYgv3vZKVJARi8/rZS1MYyTOj//q4j2MMVWv1uRcP4gEjq/RJh7K/PSQT+6j5BfA/JPv7HRvNvunj4/T/LGhrPFQL8H8/ula3lRv+vZ54sX60Y/kQ0g7lacRT9fwYWUr/xbPymJJ8uczDU/cpAotRvuLj+uDrOsH6c5vxNZfpHMKUg/g1srZg0CXj/n080zl+g9P4Bg8Ny4iTy/hmd6KeXEIr/2z/TPZWk9P7WNcB3jgWU/2kEQeFSfSr/8D1I2h7I0v3WiIPdnm0q/01M71IOPTr+oGV0U5LxMP/eQXB/vtU8/4XzthuhdWb+XF/5QputCPzbUsS4vQkk/nL1nAvNxWb8OlYULrVQrP6uiYudxIy8/+e7zPy+UWr8xbDJK36Mlv21Rr/0a3VG/LT9qkxkcRL+DYH5vHbVWv5NB0UVLlkA/DZ3+88seWz+Tpq+o08FXv8GjtIAg0FK/Fia9sAeAZL99jI/zsWViP01fBNrEbEC/y1+iVJ5TYj93qBKvyshMv+5nd+buqTw/U8Ft1ua0RT82WZk0z3ZgP9aw//QJr1w/F7ui6TEvQr9nd9Qw+L1SP2EescPQxlq/8WjckeS+QD+K5ASPKexhv0mEK5Hwc1Q/TD9eBxQedD+gXrFWhuNbPzvsljx3RVo/Ju+tS6rgPD8SxbVmfzJwv0yhC7RGA2+/o2yqIh4eUj+6utMPqmRqP6bLaaYJcis/N3asY8fIRr8dLUjDp2dtP4G5qr7LPmK/iJt+lwMAZb/tQv0gxDBXv21cl+kY02O/Ss4td56qQz+flIpZS0doP+JX8fkTpzE/wl2eWUB0X7+Vhu3g+qlkv1YKPRxgBWa/wcfXU3PDVL9dXQtLCEI0v0Qs6RzTrGS/y5oI+/jISL9f2gW+soxGv6sfWhpW4EU/h49k5QuEZT++OsR8Hno5P5ujf1TKVmm/BS+lYjYAVD+qh0ZD20tSv/IlPWE4D2W/kplzRewhUT9jUxBp5jMyv1GzRNRYc22/7FiQjwNUYT+h9DHWK5Y5P8vl5wG39CK/0YQgIRMUcj/xN5GqtYVbv48MJ6i7RmY/eIfhv24yWD98aQzfZ6pDP+s4sichP12/9Sy4guBoJz9PWkmRa2tiP3Hwl3nnTSe/LsEsLX/ccr/MEQ+SdAthv6bwvyPPkmU/fv1Nnj73cD9P1dwsXI1Tv83JYDt5OV8/j2UYNHpJRr8NyKrwxuZTP5WbWIUu4Uc/G+RqC5ZFCz/9KejSGtA+PxA8I5yzBDe/9EQXUPvbbD++wm04789SvzlD51V8OGA/KldNOjnkYb/Yo9QovEZxv/mSypYhbGC/jRg8vWskYz8rV+GSSKl5P70O/AadSUY/hrM42pgXXb+/oG1os2RlvzAkthkmY0y/1Qn+QketZL+fYl8VFm9SP6u32lET71I/19LFprc/TT8HkzOTDH1UP9moAmpgB2K/pfWNkFLiab8tmAd00y9rv5fshyclKDM/KeVr2UhSY78wvihCznD3PurJhhcfxHI/4X3H34jpab80d/mfKidwv1LztTMddjO/4wfBeaPiZL+oEfo0dp1sP3W3y4KGn2S/dlLdQf1VPj9UQvJla41mv4c3G3zQ2mC/xVd370dnFr88OfBc6Qllv+q0l0YG62O/v52zFE8mdD+eopYO7ipwP7b862sP2Ea/A8CBtbW1bz9jbHDtmsRWv8VMN2zFE3a/FQqmRjvpdz9KGJZMwmU/P25tA3N76V8/MB1C6oFbND9Ls8lTRZMevwDKvuYe1nE/+GWgNt0EMj8b6ZOej8hVP+FSAAfZYG2/NakXf4gSWz9F+pHCnxpkP0EjqSMzSkK/9Gl1wi1OYz+DGDaq47R0v0JEzknkEXc/ELXtqFrTZD+WGKMuT6RRvwU1h5KWZTm/4geRL8gRUb+5MUs85GxtP3SoL0ZSP1A/gEzPCEotJj8qxR8k7/phP2Rip203z0i/0M0+CvSESj+PC/PNJ0llv4qFdmXC1Em/h5/68wmQVr++pJeuV+eRPxDE5I2zSqA/iuZzzZkuqr/UCdH9W9qcP2nWiRig86m/PnAkx1WqmT95eaQ9NbmgPyk3E8NZTa2/vylTcoDyoD+cBY1a/jOPP5kqb9jdQ4E/w4PmrNhQfz+eVRz3G86VP95PpXgF26e/+K2cXV5VqL/JlpKf0lWRP199+YgMmoQ/8P2C6VEusL9Yr/gv5lOmv6RsNHOt5mC/ZRhO2x7Wkj+61Mfz9Qywv7UcvzgYZ6Q/pJbHX4l3mT96a5OUAlitv5L01wJdp7C/i7bMeG0Qlz9at03gxxKbPyx9iyXmVZw/cUNqJts7rr9LeW+6OhGvv1kQ+w95v5o/pMc1VlJUkD8RsPY2TUOYP1jK2H3wdZM/Kucgrb7AqL84oZUkrvd7P7I/lrCkI5c/UiwLgS+hqL986b8AE2edP9a2spVZnpY/uaKWqZUZqb/HtDmh43qaP4xBp2zuzYk/3GJUH3M4lz/xvydRG/p7P+0J5ek/f4o/GNUIjm75nD91Uy3OJ6iEPxL/oO5XmZQ/erQHOKsMrb+AMlSKWYWVPxCONhVqJaI/mxh1/xTbYz9TUHx6frCUP9dYpMbVMZU/G/VNYP6YlD/T47VZBeujPzSSOpKfWaA/sEwKeLX7sr9zARoxJeiQP0FMwqMWB2U/9zm2owkolD/S/CEP0wOhP0coas+y8Zs/BqQiGyYirr9EL2eqbPFXP4IDJIN6C2S/+j57ZjDIar/3Ccy9RHBtvwcEXWht21m/KZMz5eec8T7aGA+hi1B0vw6gWlNheU8/wrh8CGlqU794U2AJHydWP04w00/+O3E/2mHTupd1cj9fIayNos5LP30choY+02G/BBKbFcm/ab86oU91TEppP0nWEabkaHA/fOWBy7ikaj8bfMc9/W5uvw/XCPuU734/adti9buZNj+nmF+0ccVGP+otHH3kZnu/24EungbpWb8oOte4XDtYPxVAVzSj3Gg/AWLIMOa8aL8N87486sFlv4d3pkwg4mG/mapybUJyRz95TjMKtDBQPzR252zGRXS/sxp73LhuZz+6Muz8Lj0Rv13AZJV3/WQ/Vfgb+A4bV7+hbCwYIthvP3AApZ/du1S/JW+yE/34Sr99HSyjzEVvv2Xu/Oqydle/U9WdQTWCV7+KEeHZrjJbvzGafkCrPmE/3bZXYQdsVD/W8q5RZJh1P8k1rCT2t3M/OSnLSobaXb9JkAuiSSx2P3PL22/fFj2/XEHkS8TQP78i1UEQhXxjPx4apeobK3G//71vhskFgz/sk6fwIUFmv6m7a7poiCk/Ys8Y5OUZZ79uvnAkBLF2vzukR/l683O/G1sfSjIHeD9pMUWLD/ZVv5wkXMF0YnE/Cq1b/A9XLj8GWYGGA5R4v6gRR/0rtES/kz7gGa8ZUT+UdJRijBVub3JtYWxpemVkX2Nvdl9wYXJhbXOUaA1oEEsAhZRoEoeUUpQoSwFLBksGhpRoGolCIAEAAFvm+cfX1fo/wCfTQL6hhL/0IsVePJVbP9UAwXk+DXe/heF/3TI8kr/bfYMeuFEZv8An00C+oYS/ts81rj5XFj8DzuOlULYWv7NLF93YGAK/ZP4DBW86H78okTBkVy4Nv/QixV48lVs/A87jpVC2Fr+IQ+7g4m00P56NdzKEkio/xcDb+li96z6w0bK0N4gEP9UAwXk+DXe/s0sX3dgYAr+ejXcyhJIqP4PUnVE7xj8/U0xpbBrIB7+ZD7sGEqgAP4Xhf90yPJK/ZP4DBW86H7/FwNv6WL3rPlNMaWwayAe/KT3Soi70tD/eImoYMSVev9t9gx64URm/KJEwZFcuDb+w0bK0N4gEP5kPuwYSqAA/3iJqGDElXr/lKGdXGHNIP5R0lGKMFXdleG9nX3Npbmd1bGFyX3ZhbHVlc5RoDWgQSwCFlGgSh5RSlChLAUsGhZRoGolDMEQlIp+vc5VAiKBU3d9MU0BP57MDrW9EQM87sc4DakJAoohiZUX9C0BR6Cod/7ToP5R0lGJ1Ymi/SwFowl2UjA5fZGF0YV9pbl9jYWNoZZRdlCiMDGZpdHRlZHZhbHVlc5SMBXJlc2lklIwGd3Jlc2lklGVo32jijAZfdXNlX3SUiGjAfZSMFl93ZXhvZ19zaW5ndWxhcl92YWx1ZXOUaOmMCGRmX21vZGVslEdAFAAAAAAAAIwIZGZfcmVzaWSUaNSMCGNvdl90eXBllIwJbm9ucm9idXN0lIwIY292X2t3ZHOUfZSMC2Rlc2NyaXB0aW9ulIxXU3RhbmRhcmQgRXJyb3JzIGFzc3VtZSB0aGF0IHRoZSBjb3ZhcmlhbmNlIG1hdHJpeCBvZiB0aGUgZXJyb3JzIGlzIGNvcnJlY3RseSBzcGVjaWZpZWQulHN1YowHX19kb2NfX5RY3QMAAAogICAgUmVzdWx0cyBjbGFzcyBmb3IgZm9yIGFuIE9MUyBtb2RlbC4KCiAgICBQYXJhbWV0ZXJzCiAgICAtLS0tLS0tLS0tCiAgICBtb2RlbCA6IFJlZ3Jlc3Npb25Nb2RlbAogICAgICAgIFRoZSByZWdyZXNzaW9uIG1vZGVsIGluc3RhbmNlLgogICAgcGFyYW1zIDogbmRhcnJheQogICAgICAgIFRoZSBlc3RpbWF0ZWQgcGFyYW1ldGVycy4KICAgIG5vcm1hbGl6ZWRfY292X3BhcmFtcyA6IG5kYXJyYXkKICAgICAgICBUaGUgbm9ybWFsaXplZCBjb3ZhcmlhbmNlIHBhcmFtZXRlcnMuCiAgICBzY2FsZSA6IGZsb2F0CiAgICAgICAgVGhlIGVzdGltYXRlZCBzY2FsZSBvZiB0aGUgcmVzaWR1YWxzLgogICAgY292X3R5cGUgOiBzdHIKICAgICAgICBUaGUgY292YXJpYW5jZSBlc3RpbWF0b3IgdXNlZCBpbiB0aGUgcmVzdWx0cy4KICAgIGNvdl9rd2RzIDogZGljdAogICAgICAgIEFkZGl0aW9uYWwga2V5d29yZHMgdXNlZCBpbiB0aGUgY292YXJpYW5jZSBzcGVjaWZpY2F0aW9uLgogICAgdXNlX3QgOiBib29sCiAgICAgICAgRmxhZyBpbmRpY2F0aW5nIHRvIHVzZSB0aGUgU3R1ZGVudCdzIHQgaW4gaW5mZXJlbmNlLgogICAgKiprd2FyZ3MKICAgICAgICBBZGRpdGlvbmFsIGtleXdvcmQgYXJndW1lbnRzIHVzZWQgdG8gaW5pdGlhbGl6ZSB0aGUgcmVzdWx0cy4KCiAgICBTZWUgQWxzbwogICAgLS0tLS0tLS0KICAgIFJlZ3Jlc3Npb25SZXN1bHRzCiAgICAgICAgUmVzdWx0cyBzdG9yZSBmb3IgV0xTIGFuZCBHTFcgbW9kZWxzLgoKICAgIE5vdGVzCiAgICAtLS0tLQogICAgTW9zdCBvZiB0aGUgbWV0aG9kcyBhbmQgYXR0cmlidXRlcyBhcmUgaW5oZXJpdGVkIGZyb20gUmVncmVzc2lvblJlc3VsdHMuCiAgICBUaGUgc3BlY2lhbCBtZXRob2RzIHRoYXQgYXJlIG9ubHkgYXZhaWxhYmxlIGZvciBPTFMgYXJlOgoKICAgIC0gZ2V0X2luZmx1ZW5jZQogICAgLSBvdXRsaWVyX3Rlc3QKICAgIC0gZWxfdGVzdAogICAgLSBjb25mX2ludF9lbAogICAglHViLg==", "type": "binary"}] \ No newline at end of file +[{"name": "app.py", "content": "from shiny import App, ui, render\nimport pandas as pd\nimport numpy as np\nimport pickle\nimport statsmodels.api as sm\nfrom shinywidgets import output_widget, render_widget\nimport plotly.express as px\nfrom pathlib import Path\n\nmodel_path = Path(__file__).parent / \"heisman_model.pkl\"\nmodel_data_path = Path(__file__).parent / \"Model_Data.csv\"\nweekly_data_path = Path(__file__).parent / \"Weekly_Data.csv\"\n\nmodel = pickle.load(open(model_path, 'rb'))\n################### Historical #########################\nmodel_data = pd.read_csv(model_data_path).reset_index(drop = True)\n\npredict_data = model_data[['Passing_Rate', 'Passing_TD', 'Rushing_TD', 'Power5', 'CPI']]\npredict_data = sm.tools.add_constant(predict_data)\npredict_data['Prediction'] = model.predict(predict_data)\npredict_data = predict_data['Prediction']\n\nmodel_data = pd.merge(model_data, predict_data, left_index=True, right_index=True)\nmodel_data['CPI'] = model_data['CPI'].round(2)\nmodel_data['Prediction'] = model_data['Prediction'].round(2)\n\n################### Current #########################\ncurrent_df = pd.read_csv(weekly_data_path).reset_index(drop = True)\n\ncurrent_predict_df = current_df[['Passing_Rate', 'Passing_TD', 'Rushing_TD', 'Power5', 'CPI']]\ncurrent_predict_df = sm.tools.add_constant(current_predict_df)\ncurrent_predict_df['Projected Voting Points'] = model.predict(current_predict_df)\ncurrent_predict_df = current_predict_df['Projected Voting Points']\n\ncurrent_df = pd.merge(current_df, current_predict_df, left_index=True, right_index=True)\ncurrent_df['CPI'] = current_df['CPI'].round(2)\ncurrent_df['Projected Voting Points'] = current_df['Projected Voting Points'].round(2)\n\n\n# Part 1: ui ----\napp_ui = ui.page_fluid(\n ui.navset_tab(\n ui.nav(\"Model Details\", \n \n ui.markdown(\n \"\"\"\n # So how does this model work anyway?\n This is a project that I spent the summer of 2020 on in my free time.\n
\n\n Simply put, the model aims to predict the finals standings in Heisman voting for quarterbacks\n specifically. This is mostly because it is difficult to come up with a sample of metrics that apply\n to the different positions across college football.\n
\n\n The model itself is a linear regression with voting points as a response, and individual and team\n statitistics as the predictors. The model is built with training data from the 2006 to 2018 seasons.\n
\n\n The model is made up of the following 5 predictors;\n
\n \n **Passer Rating** : Passer efficency rating as according to pro-football-reference.com.\n
\n\n **Passing TDs** : Number of passing touchdowns thrown by a quarterback.\n
\n\n **Rushing TDs** : Number of rushing touchdowns ran by a quarterback.\n
\n\n **Power 5 Indicator** : A binary value of 0 or 1. Set equal to 1, \n if the quarterback's team plays in a power 5 conference. Otherwise 0. Notre Dame is the only independent team \n to receive a power 5 label.\n
\n\n **CPI** : A team strength of record metric involving the winning percentages of opponents. More details \n of the metric can be found at www.cpiratings.com/about.html.\n \"\"\"\n )\n ),\n ui.nav(\"Past Model Results\", \n \n ui.input_select(\"model_year\", \"Model Year\", model_data['Year'].tolist()),\n ui.output_table(\"historical_data\")\n ),\n\n ui.nav(\"Current Model Results\", \n \n ui.output_table(\"current_data\")\n ),\n \n ui.nav(\"What If\", \n \n ui.input_numeric(\"what_if_QBR\", \"Passer Rating\", value=0.0),\n ui.input_numeric(\"what_if_pass_TD\", \"Passing TDs\", value=0),\n ui.input_numeric(\"what_if_rush_TD\", \"Rushing TDs\", value=0),\n ui.input_radio_buttons(\"what_if_power_5\", \"Power 5 Conference\", {1 : \"Yes\", 0: \"No\"}),\n ui.input_numeric(\"what_if_CPI\", \"CPI\", value=0.0),\n ui.output_text(\"what_if_analysis\")\n ),\n \n ui.nav(\"Scatter\",\n ui.div(\n output_widget(\"my_widget\")\n )\n )\n )\n)\n\n\n\n\n# Part 2: server ----\ndef server(input, output, session):\n\n @output\n @render.table\n def historical_data():\n\n result_df = model_data[model_data['Year'] == int(input.model_year())]\n\n result_df['Actual_Rank'] = result_df['points_won'].rank(ascending = False).astype('int')\n result_df['Predicted_Rank'] = result_df['Prediction'].rank(ascending = False).astype('int')\n\n result_cols = ['Player', 'School', 'Actual_Rank', 'Predicted_Rank', 'Passing_Rate', 'Passing_TD', 'Rushing_TD', 'Power5', 'CPI']\n result_df = result_df[result_cols]\n\n return result_df\n \n @output\n @render.table\n def current_data():\n\n result_df = current_df\n\n result_df = result_df.sort_values(by = 'Projected Voting Points', ascending = False)\n result_df = result_df.reset_index(drop = True)\n result_df['Rank'] = result_df.index + 1\n result_cols = ['Rank', 'Player', 'School', 'Projected Voting Points', 'Passing_Rate', 'Passing_TD', 'Rushing_TD', 'Power5', 'CPI']\n result_df = result_df[result_cols]\n\n return result_df\n \n @output\n @render.text\n def what_if_analysis():\n\n what_if_df = pd.DataFrame({\n 'Passing_Rate' : [float(input.what_if_QBR())],\n 'Passing_TD' : [int(input.what_if_pass_TD())],\n 'Rushing_TD' : [int(input.what_if_rush_TD())],\n 'Power5' : [int(input.what_if_power_5())],\n 'CPI' : [float(input.what_if_CPI())]\n })\n\n what_if_df = sm.tools.add_constant(what_if_df, has_constant='add')\n\n what_if_df['Prediction'] = model.predict(what_if_df)\n\n result = what_if_df.iloc[0]['Prediction']\n result = result.round(2)\n\n return f\"A player with these statistics would have {result} projected voting points.\"\n \n @output\n @render_widget\n def my_widget():\n fig = px.scatter(\n model_data, x=\"Year\", y=\"Prediction\",\n hover_data=['Player']\n )\n return fig\n\n# Combine into a shiny app.\n# Note that the variable must be \"app\".\napp = App(app_ui, server)", "type": "text"}, {"name": "Model_Data.csv", "content": "Player,School,Year,points_won,Passing_Rate,Passing_TD,Rushing_TD,Power5,CPI\nTroy Smith,Ohio State,2006,2540,161.9,30,1,1,15.013680174870936\nBrady Quinn,Notre Dame,2006,782,146.7,37,2,1,8.231919146738909\nColt Brennan,Hawaii,2006,202,186.0,58,5,0,6.365435540069685\nTim Tebow,Florida,2007,1957,172.5,32,23,1,7.987912822160973\nColt Brennan,Hawaii,2007,632,159.8,38,8,0,7.5994759572849\nChase Daniel,Missouri,2007,425,147.9,33,4,1,11.748104548755686\nDennis Dixon,Oregon,2007,178,161.2,20,9,1,6.540100800550993\nPat White,West Virginia,2007,150,151.4,14,14,0,11.379512110196254\nMatt Ryan,Boston College,2007,63,127.0,31,2,1,8.768469146897912\nSam Bradford,Oklahoma,2008,1726,180.8,50,5,1,15.05704821146074\nColt McCoy,Texas,2008,1604,173.8,34,11,1,18.946208112380297\nTim Tebow,Florida,2008,1575,172.4,30,12,1,19.409963559776127\nGraham Harrell,Texas Tech,2008,213,160.0,45,6,1,13.05053009399466\nPat White,West Virginia,2008,19,142.3,21,8,0,6.385230641176652\nNate Davis,Ball State,2008,10,157.0,26,5,0,6.050702467936028\nColt McCoy,Texas,2009,1145,147.4,27,3,1,16.18331903502398\nTim Tebow,Florida,2009,390,164.2,21,14,1,18.51486090299109\nKellen Moore,Boise State,2009,100,161.7,39,1,0,14.46082921027991\nCase Keenum,Houston,2009,37,154.8,44,4,0,4.218052997436561\nCam Newton,Auburn,2010,2263,182.0,30,20,1,23.86780983482786\nAndrew Luck,Stanford,2010,1079,170.2,32,3,1,13.946308906421848\nKellen Moore,Boise State,2010,635,182.6,35,1,0,12.802241937566109\nDenard Robinson,Michigan,2010,84,149.6,18,14,1,3.2478886059804224\nRyan Mallett,Arkansas,2010,41,163.6,32,4,1,10.82973394387262\nColin Kaepernick,Nevada,2010,31,150.5,21,20,0,11.384387560083765\nAndy Dalton,TCU,2010,30,166.5,27,6,0,14.944350584507326\nRobert Griffin III,Baylor,2011,1687,189.5,37,10,1,10.316157413813375\nAndrew Luck,Stanford,2011,1407,169.7,37,2,1,9.667409405228565\nMatt Barkley,USC,2011,153,161.2,39,2,1,9.562203977574791\nCase Keenum,Houston,2011,123,174.0,48,3,0,11.420863535280626\nKellen Moore,Boise State,2011,90,175.2,43,0,0,12.265954369362133\nRussell Wilson,Wisconsin,2011,52,191.8,33,6,1,8.281890427937858\nJohnny Manziel,Texas A&M,2012,2029,155.3,26,21,1,15.754760156860875\nCollin Klein,Kansas State,2012,894,149.2,16,23,1,11.817693133497077\nBraxton Miller,Ohio State,2012,144,140.5,15,13,1,15.169148199200322\nJordan Lynch,Northern Illinois,2012,52,144.9,25,19,0,6.92703223246081\nJameis Winston,Florida State,2013,2205,184.8,40,4,1,19.32052650022246\nA.J. McCarron,Alabama,2013,704,167.2,28,0,1,11.90196866646686\nJordan Lynch,Northern Illinois,2013,558,138.4,24,23,0,7.111211920283987\nJohnny Manziel,Texas A&M,2013,421,172.9,37,9,1,8.051361094960829\nBryce Petty,Baylor,2013,127,174.3,32,14,1,11.402244928532845\nDerek Carr,Fresno State,2013,107,156.3,50,2,0,7.156147448813237\nBraxton Miller,Ohio State,2013,91,158.1,24,12,1,10.39338163747249\nMarcus Mariota,Oregon,2014,2534,181.7,42,15,1,16.12744333111277\nTrevone Boykin,TCU,2014,218,145.9,33,8,1,13.076626318134918\nJ.T. Barrett,Ohio State,2014,78,169.8,34,11,1,20.0747422358138\nJameis Winston,Florida State,2014,51,145.5,25,3,1,18.46103191334333\nDak Prescott,Mississippi State,2014,21,151.7,27,14,1,9.456126458240307\nDeshaun Watson,Clemson,2015,1165,156.3,35,12,1,19.16167854243615\nBaker Mayfield,Oklahoma,2015,334,173.3,36,7,1,12.740224517380366\nKeenan Reynolds,Navy,2015,180,162.1,8,24,0,10.128862442591032\nConnor Cook,Michigan State,2015,13,136.6,24,0,1,14.713371407886711\nLamar Jackson,Louisville,2016,2144,148.8,30,21,1,5.608782090662399\nDeshaun Watson,Clemson,2016,1524,151.1,41,9,1,23.78005620893973\nBaker Mayfield,Oklahoma,2016,361,196.4,40,6,1,11.25001891558911\nJake Browning,Washington,2016,182,167.5,43,4,1,12.923870541835983\nBaker Mayfield,Oklahoma,2017,2398,198.9,43,5,1,11.183099131224177\nLamar Jackson,Louisville,2017,793,146.6,27,18,1,3.9226957076095994\nMason Rudolph,Oklahoma State,2017,56,170.6,37,10,1,6.425405376500221\nMcKenzie Milton,UCF,2017,54,179.3,37,8,0,19.08379077956817\nKyler Murray,Oklahoma,2018,2167,199.2,42,12,1,12.942861869472573\nTua Tagovailoa,Alabama,2018,1871,199.4,43,5,1,20.688097541235337\nDwayne Haskins,Ohio State,2018,783,174.1,50,4,1,13.097950650643533\nWill Grier,West Virginia,2018,126,175.5,37,3,1,5.5749718367802\nGardner Minshew,Washington State,2018,122,147.6,38,4,1,10.593990104817577\nMcKenzie Milton,UCF,2018,39,161.0,25,9,0,11.842688493982308\nJoe Burrow,LSU,2019,2608,202.0,60,5,1,27.81090580974389\nJalen Hurts,Oklahoma,2019,762,191.2,32,20,1,11.86131918185052\nJustin Fields,Ohio State,2019,747,181.4,41,10,1,19.03510596761913\nTrevor Lawrence,Clemson,2019,88,166.7,36,9,1,17.71916867557893\n", "type": "text"}, {"name": "Weekly_Data.csv", "content": "Player,School,Passing_Rate,Passing_TD,Rushing_TD,Power5,CPI\nJayden Daniels,LSU,197.7,22,4,1,9.996470516382256\nMichael Penix Jr.,Washington,189.9,20,0,1,22.69695237105186\nJ.J. McCarthy,Michigan,195.9,14,3,1,21.270050538343227\nJalen Milroe,Alabama,174.7,11,5,1,13.570723302000426\nTimmy Mcclain,UCF,177.7,9,1,1,1.6849078341013826\nKaidon Salter,Liberty,175.6,14,6,0,12.20981023988543\nCaleb Williams,USC,187.0,23,6,1,8.420336946119777\nJaxson Dart,Ole Miss,167.8,12,4,1,17.703387784662432\nDiego Pavia,New Mexico State,167.0,14,2,0,0.7450503077325233\nKyle McCord,Ohio State,165.9,11,0,1,26.14413878407365\nDillon Gabriel,Oklahoma,178.2,16,5,1,27.715560317738326\nBrady Cook,Missouri,168.7,14,4,1,16.729790617545717\nTyler Van Dyke,Miami (FL),171.8,16,1,1,5.311439268232076\nCardell Williams,Tulsa,151.6,8,3,0,2.171415441176471\nQuinn Ewers,Texas,163.8,11,5,1,20.75175441116404\nBrett Gabbert,Miami (OH),162.9,14,2,0,3.920146548570542\nJordan McCloud,James Madison,168.1,14,2,0,19.975142045454543\nCarson Beck,Georgia,163.8,12,3,1,15.485074626865671\nJack Plummer,Louisville,153.2,13,1,1,12.010369640535282\nSam Hartman,Notre Dame,166.9,18,2,1,15.199267174586778\nDrake Maye,North Carolina,159.1,12,4,1,21.284646674865197\nJT Daniels,Rice,157.4,15,0,0,1.0250516408591794\nSpencer Rattler,South Carolina,163.3,11,2,1,1.2742037978468896\nD.J. Uiagalelei,Oregon State,158.9,15,5,1,14.987510612382634\nKeyone Jenkins,Florida International,133.5,5,4,0,0.618658613936305\nGarrett Greene,West Virginia,143.7,6,5,1,5.763090676883778\nZeon Chriss,Louisiana,159.7,7,5,0,2.5762195121951215\nTJ Finley,Texas State,160.5,14,3,0,3.075065664479112\nBo Nix,Oregon,178.2,17,1,1,10.974942044357128\nCooper Legas,Utah State,159.7,13,0,0,1.8086380318333217\nDarren Grainger,Georgia State,154.4,8,5,0,9.702508336771178\nGraham Mertz,Florida,163.7,12,2,1,5.004320683556366\nCameron Ward,Washington State,159.8,14,3,1,6.126747240028489\nGunnar Watson,Troy,144.8,11,0,0,9.012728683930499\nGrayson McCall,Coastal Carolina,143.9,8,1,0,2.9700185403318238\nHaynes King,Georgia Tech,155.4,16,2,1,2.6717275943396226\nGrant Wilson,Old Dominion,134.8,7,1,0,1.1267314721369597\nChandler Rogers,North Texas,155.8,12,3,0,0.9459459459459462\nCarter Bradley,South Alabama,149.2,11,1,0,2.035137287621359\nJordan Travis,Florida State,154.1,13,4,1,23.00141752921983\nJayden Maiava,UNLV,140.3,5,1,0,6.340255400405775\nShedeur Sanders,Colorado,160.3,21,3,1,3.3095043052368793\nDante Moore,UCLA,129.8,10,0,1,9.983896940418676\nDeQuan Finn,Toledo,149.3,12,4,0,3.4537886646609453\nSeth Henigan,Memphis,144.7,13,3,0,5.452094625112917\nJoey Aguilar,Appalachian State,144.5,14,1,0,1.9296139171269242\nBrayden Fowler-Nicolosi,Colorado State,137.7,14,1,0,1.4417531718569778\nTaulia Tagovailoa,Maryland,146.0,16,4,1,4.004389579822285\nK.J. Jefferson,Arkansas,148.9,14,1,1,0.541213949654249\nGarrett Shrader,Syracuse,135.5,8,6,1,3.591105011169142\nDylan Hopkins,New Mexico,130.4,7,1,0,0.298408819083788\nAshton Daniels,Stanford,139.6,7,0,1,0.7859639513429152\nChandler Morris,TCU,144.6,12,3,1,3.7084461597614493\nNoah Fifita,Arizona,156.7,8,0,1,3.4744936096058257\nMax Johnson,Texas A&M,133.5,7,1,1,3.307061073261007\nJacob Zeno,UAB,148.3,12,4,0,0.40883006949742523\nWill Rogers,Mississippi State,138.7,10,0,1,1.602176870748299\nThomas Castellanos,Boston College,135.5,10,7,1,2.5212681708644276\nPreston Stone,SMU,137.6,14,1,0,3.484857682635864\nMikey Keene,Fresno State,147.7,15,0,0,4.465065626028063\nByrum Brown,South Florida,133.9,12,7,0,1.4834943682158241\nChevan Cordeiro,San Jose State,130.4,8,3,0,0.43959378759469797\nDonovan Smith,Houston,144.5,13,4,1,1.3569846082089552\nPhil Jurkovec,Pitt,124.6,6,1,1,0.5460516122693451\nBrayden Schager,Hawaii,137.8,17,1,0,0.3126073895065902\nLuke Altmyer,Illinois,127.7,8,3,1,1.8241426642919532\nCam Fancher,Marshall,135.0,7,2,0,4.750060178127255\nWill Howard,Kansas State,130.6,9,6,1,7.379528677010535\nMitch Griffis,Wake Forest,129.8,9,0,1,1.4392148740192017\nRiley Leonard,Duke,129.8,3,4,1,16.525516391324228\nNicholas Vattiato,Middle Tennessee State,137.4,11,2,0,0.4310847491706042\nRocco Becht,Iowa State,134.4,12,2,1,5.310806554517334\nDevin Leary,Kentucky,130.2,14,1,1,5.820780693229675\nEmory Jones,Cincinnati,131.2,11,3,1,0.8282001201923075\nTayven Jackson,Indiana,118.3,2,1,1,0.6737526165150155\nKedon Slovis,Brigham Young,128.1,10,3,1,2.71911029486787\nRocky Lombardi,Northern Illinois,123.4,6,2,0,1.1935816216927155\nKyron Drones,Virginia Tech,128.3,6,4,1,1.3726528468543207\nTaylen Green,Boise State,116.1,5,4,0,1.4237558654926838\nJack Turner,Louisiana Tech,121.1,5,2,0,0.3865979381443298\nJalen Mayden,San Diego State,125.1,6,3,0,1.5487259992754496\nJoe Milton,Tennessee,133.6,10,3,1,10.950425091911764\nDrew Allar,Penn State,145.3,12,3,1,24.810970139689864\nKurtis Rourke,Ohio,131.7,8,2,0,3.418116014878859\nTa'Quan Roberson,Connecticut,131.6,7,1,0,0.07637773686890442\nAustin Reed,Western Kentucky,134.2,14,3,0,4.995477883931683\nNoah Kim,Michigan State,119.0,6,0,1,0.9758874520779282\nAndrew Peasley,Wyoming,141.6,12,4,0,9.107826346139213\nMichael Alaimo,Kent State,111.2,2,1,0,0.035410592808551994\nHudson Card,Purdue,121.1,7,3,1,0.5990409401488118\nHeinrich Haarberg,Nebraska,116.9,4,3,1,2.2462277091906726\nDavis Brin,Georgia Southern,130.3,12,1,0,3.1488850344069195\nCade Klubnik,Clemson,135.4,11,3,1,8.347862188230616\nGavin Wimsatt,Rutgers,114.2,7,4,1,6.405312421763326\nE.J. Warner,Temple,121.3,12,0,0,0.21086421327107283\nJase Bauer,Central Michigan,112.2,4,7,0,2.099125364431487\nPayton Thorne,Auburn,118.6,4,2,1,2.153921072839992\nBilly Wiles,Southern Mississippi,112.7,7,1,0,0.08553542818445446\nTanner Mordecai,Wisconsin,118.8,3,4,1,6.393294608234562\nAlan Bowman,Oklahoma State,112.6,4,1,1,6.270821085635898\nBrennan Armstrong,North Carolina State,112.5,5,3,1,4.095803331129478\nDaniel Richardson,Florida Atlantic,121.7,5,0,0,2.0897284533648164\nJiya Wright,Louisiana-Monroe,114.1,6,1,0,0.45108611448337194\nAthan Kaliakmanis,Minnesota,110.8,6,2,1,3.5997308612440193\nAustin Smith,Eastern Michigan,114.5,6,1,0,1.1695764438716405\nBen Bryant,Northwestern,115.9,6,2,1,2.9203424043062203\nBrendon Lewis,Nevada,102.4,2,3,0,0.0\nCole Snyder,Buffalo,116.7,11,1,0,0.3553316852262804\nAlex Flinn,East Carolina,85.5,1,0,0,0.07646706398007125\n", "type": "text"}, {"name": "heisman_model.pkl", "content": "gASVGDsAAAAAAACMI3N0YXRzbW9kZWxzLnJlZ3Jlc3Npb24ubGluZWFyX21vZGVslIwYUmVncmVzc2lvblJlc3VsdHNXcmFwcGVylJOUKYGUfZQojAhfcmVzdWx0c5RoAIwKT0xTUmVzdWx0c5STlCmBlH2UKIwGcGFyYW1zlIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBoWUaA6MBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMwEKe0LLHUqMCBOhzYBe0mQE+UaKKMZTRAprDxtdCxRkCRWmqPTkOBQC5Ah5baiUVAlHSUYowFbW9kZWyUaACMA09MU5STlCmBlH2UKIwHd2VpZ2h0c5RoDWgQSwCFlGgSh5RSlChLAUtChZRoGolCEAIAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwP5R0lGKMBGRhdGGUjBVzdGF0c21vZGVscy5iYXNlLmRhdGGUjApQYW5kYXNEYXRhlJOUKYGUfZQojApvcmlnX2VuZG9nlIwRcGFuZGFzLmNvcmUuZnJhbWWUjAlEYXRhRnJhbWWUk5QpgZR9lCiMBF9tZ3KUjB5wYW5kYXMuY29yZS5pbnRlcm5hbHMubWFuYWdlcnOUjAxCbG9ja01hbmFnZXKUk5SMFnBhbmRhcy5fbGlicy5pbnRlcm5hbHOUjA9fdW5waWNrbGVfYmxvY2uUk5RoDWgQSwCFlGgSh5RSlChLAUsBS0KGlGgXjAJpOJSJiIeUUpQoSwNoG05OTkr/////Sv////9LAHSUYolCEAIAAOwJAAAAAAAADgMAAAAAAADKAAAAAAAAAKUHAAAAAAAAeAIAAAAAAACpAQAAAAAAALIAAAAAAAAAlgAAAAAAAAA/AAAAAAAAAL4GAAAAAAAARAYAAAAAAAAnBgAAAAAAANUAAAAAAAAAEwAAAAAAAAAKAAAAAAAAAHkEAAAAAAAAhgEAAAAAAABkAAAAAAAAACUAAAAAAAAA1wgAAAAAAAA3BAAAAAAAAHsCAAAAAAAAVAAAAAAAAAApAAAAAAAAAB8AAAAAAAAAHgAAAAAAAACXBgAAAAAAAH8FAAAAAAAAmQAAAAAAAAB7AAAAAAAAAFoAAAAAAAAANAAAAAAAAADtBwAAAAAAAH4DAAAAAAAAkAAAAAAAAAA0AAAAAAAAAJ0IAAAAAAAAwAIAAAAAAAAuAgAAAAAAAKUBAAAAAAAAfwAAAAAAAABrAAAAAAAAAFsAAAAAAAAA5gkAAAAAAADaAAAAAAAAAE4AAAAAAAAAMwAAAAAAAAAVAAAAAAAAAI0EAAAAAAAATgEAAAAAAAC0AAAAAAAAAA0AAAAAAAAAYAgAAAAAAAD0BQAAAAAAAGkBAAAAAAAAtgAAAAAAAABeCQAAAAAAABkDAAAAAAAAOAAAAAAAAAA2AAAAAAAAAHcIAAAAAAAATwcAAAAAAAAPAwAAAAAAAH4AAAAAAAAAegAAAAAAAAAnAAAAAAAAAJR0lGKMCGJ1aWx0aW5zlIwFc2xpY2WUk5RLAEsBSwGHlFKUSwKHlFKUhZRdlCiMGHBhbmRhcy5jb3JlLmluZGV4ZXMuYmFzZZSMCl9uZXdfSW5kZXiUk5RoUYwFSW5kZXiUk5R9lChoK2gNaBBLAIWUaBKHlFKUKEsBSwGFlGgXjAJPOJSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0s/dJRiiV2UjApwb2ludHNfd29ulGF0lGKMBG5hbWWUTnWGlFKUaFOMG3BhbmRhcy5jb3JlLmluZGV4ZXMubnVtZXJpY5SMCkludDY0SW5kZXiUk5R9lChoK2gNaBBLAIWUaBKHlFKUKEsBS0KFlGhEiUIQAgAAAAAAAAAAAAABAAAAAAAAAAIAAAAAAAAAAwAAAAAAAAAEAAAAAAAAAAUAAAAAAAAABgAAAAAAAAAHAAAAAAAAAAgAAAAAAAAACQAAAAAAAAAKAAAAAAAAAAsAAAAAAAAADAAAAAAAAAANAAAAAAAAAA4AAAAAAAAADwAAAAAAAAAQAAAAAAAAABEAAAAAAAAAEgAAAAAAAAATAAAAAAAAABQAAAAAAAAAFQAAAAAAAAAWAAAAAAAAABcAAAAAAAAAGAAAAAAAAAAZAAAAAAAAABoAAAAAAAAAGwAAAAAAAAAcAAAAAAAAAB0AAAAAAAAAHgAAAAAAAAAfAAAAAAAAACAAAAAAAAAAIQAAAAAAAAAiAAAAAAAAACMAAAAAAAAAJAAAAAAAAAAlAAAAAAAAACYAAAAAAAAAJwAAAAAAAAAoAAAAAAAAACkAAAAAAAAAKgAAAAAAAAArAAAAAAAAACwAAAAAAAAALQAAAAAAAAAuAAAAAAAAAC8AAAAAAAAAMAAAAAAAAAAxAAAAAAAAADIAAAAAAAAAMwAAAAAAAAA0AAAAAAAAADUAAAAAAAAANgAAAAAAAAA3AAAAAAAAADgAAAAAAAAAOQAAAAAAAAA6AAAAAAAAADsAAAAAAAAAPAAAAAAAAAA9AAAAAAAAAD4AAAAAAAAAPwAAAAAAAABAAAAAAAAAAEEAAAAAAAAAlHSUYmhjTnWGlFKUZYaUUpSMBF90eXCUjAlkYXRhZnJhbWWUjAlfbWV0YWRhdGGUXZSMBWF0dHJzlH2UjAZfZmxhZ3OUfZSMF2FsbG93c19kdXBsaWNhdGVfbGFiZWxzlIhzdWKMCW9yaWdfZXhvZ5RoNCmBlH2UKGg3aDpoPWgNaBBLAIWUaBKHlFKUKEsBSwNLQoaUaBqJQjAGAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D/NzMzMzDxkQGZmZmZmVmJAAAAAAABAZ0AAAAAAAJBlQJqZmZmZ+WNAzczMzMx8YkBmZmZmZiZkQM3MzMzM7GJAAAAAAADAX0CamZmZmZlmQJqZmZmZuWVAzczMzMyMZUAAAAAAAABkQJqZmZmZyWFAAAAAAACgY0DNzMzMzGxiQGZmZmZmhmRAZmZmZmY2ZECamZmZmVljQAAAAAAAwGZAZmZmZmZGZUAzMzMzM9NmQDMzMzMzs2JAMzMzMzNzZEAAAAAAANBiQAAAAAAA0GRAAAAAAACwZ0BmZmZmZjZlQGZmZmZmJmRAAAAAAADAZUBmZmZmZuZlQJqZmZmZ+WdAmpmZmZlpY0BmZmZmZqZiQAAAAAAAkGFAzczMzMwcYkCamZmZmRlnQGZmZmZm5mRAzczMzMxMYUDNzMzMzJxlQJqZmZmZyWVAmpmZmZmJY0AzMzMzM8NjQGZmZmZmtmZAzczMzMw8YkCamZmZmTllQAAAAAAAMGJAZmZmZmb2YkCamZmZmYljQJqZmZmZqWVAMzMzMzNDZEAzMzMzMxNhQJqZmZmZmWJAMzMzMzPjYkDNzMzMzIxoQAAAAAAA8GRAzczMzMzcaEAzMzMzM1NiQDMzMzMzU2VAmpmZmZlpZkBmZmZmZuZoQM3MzMzM7GhAMzMzMzPDZUAAAAAAAPBlQDMzMzMzc2JAAAAAAAAgZEA1WX8WAQcuQKMePRu+diBA4pT1uzR2GUD56zlrn/MfQJYbfQbdZR5A/ck1jwd/J0DGoysvECkaQC11S2lPwiZAt9K7yXSJIUDRCVVsNR0uQB7i4bE68jJAS8oxX/NoM0B8V5oU3xkqQFUVteZ5ihlAaXIGWeszGECLKQz/7S4wQPRVlOzNgzJAL2NmzvHrLECjI/NISd8QQJq7C8ko3jdAoP3ZmYLkK0D4pop0v5opQEPlfQWt+wlAxaAy49KoJUAXGT9yzsQmQLzVeOuB4y1Aym5xYt+hJEC+/4CvtlUjQM26IjPZHyNA7TfgbHvXJkD/Rs0rK4goQNsYMvFTkCBAJBVc7G+CL0BCEaWsqKInQEB8v5eaVi5AOAcD8Ee1G0Dx9FMGDlIzQNr7SNbOzSdAKi6iieFxHEB6SV4ATBogQJQPGgzzzSZA2QboHeWfHEAilWdRackkQP84SyCgIDBAA86UkDsnKkBAc6JOIhM0QM84/i8GdjJAAfc5aInpIkBsOtTDYykzQC6xO7X+eilA6jgRQvpBJEDAjGUEP20tQF0kh5JkbxZAGXCCw7HHN0BYrLN6AoAmQMHYRY8F2SlAVRFZK79dJkATvoJJrmEPQK5xjnedsxlAnvMBUHMVM0BsD3zKvuIpQFQQFCknsDRAlEVyliYyKkA4XsxqxUwWQJ+tlHgfMCVAML3E3XSvJ0CUdJRiaA1oEEsAhZRoEoeUUpQoSwFLA4WUaESJQxgAAAAAAAAAAAEAAAAAAAAABQAAAAAAAACUdJRiSwKHlFKUaD1oDWgQSwCFlGgSh5RSlChLAUsDS0KGlGhEiUIwBgAAHgAAAAAAAAAlAAAAAAAAADoAAAAAAAAAIAAAAAAAAAAmAAAAAAAAACEAAAAAAAAAFAAAAAAAAAAOAAAAAAAAAB8AAAAAAAAAMgAAAAAAAAAiAAAAAAAAAB4AAAAAAAAALQAAAAAAAAAVAAAAAAAAABoAAAAAAAAAGwAAAAAAAAAVAAAAAAAAACcAAAAAAAAALAAAAAAAAAAeAAAAAAAAACAAAAAAAAAAIwAAAAAAAAASAAAAAAAAACAAAAAAAAAAFQAAAAAAAAAbAAAAAAAAACUAAAAAAAAAJQAAAAAAAAAnAAAAAAAAADAAAAAAAAAAKwAAAAAAAAAhAAAAAAAAABoAAAAAAAAAEAAAAAAAAAAPAAAAAAAAABkAAAAAAAAAKAAAAAAAAAAcAAAAAAAAABgAAAAAAAAAJQAAAAAAAAAgAAAAAAAAADIAAAAAAAAAGAAAAAAAAAAqAAAAAAAAACEAAAAAAAAAIgAAAAAAAAAZAAAAAAAAABsAAAAAAAAAIwAAAAAAAAAkAAAAAAAAAAgAAAAAAAAAGAAAAAAAAAAeAAAAAAAAACkAAAAAAAAAKAAAAAAAAAArAAAAAAAAACsAAAAAAAAAGwAAAAAAAAAlAAAAAAAAACUAAAAAAAAAKgAAAAAAAAArAAAAAAAAADIAAAAAAAAAJQAAAAAAAAAmAAAAAAAAABkAAAAAAAAAAQAAAAAAAAACAAAAAAAAAAUAAAAAAAAAFwAAAAAAAAAIAAAAAAAAAAQAAAAAAAAACQAAAAAAAAAOAAAAAAAAAAIAAAAAAAAABQAAAAAAAAALAAAAAAAAAAwAAAAAAAAABgAAAAAAAAAIAAAAAAAAAAUAAAAAAAAAAwAAAAAAAAAOAAAAAAAAAAEAAAAAAAAABAAAAAAAAAAUAAAAAAAAAAMAAAAAAAAAAQAAAAAAAAAOAAAAAAAAAAQAAAAAAAAAFAAAAAAAAAAGAAAAAAAAAAoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAAGAAAAAAAAABUAAAAAAAAAFwAAAAAAAAANAAAAAAAAABMAAAAAAAAABAAAAAAAAAAAAAAAAAAAABcAAAAAAAAACQAAAAAAAAAOAAAAAAAAAAIAAAAAAAAADAAAAAAAAAAPAAAAAAAAAAgAAAAAAAAACwAAAAAAAAADAAAAAAAAAA4AAAAAAAAADAAAAAAAAAAHAAAAAAAAABgAAAAAAAAAAAAAAAAAAAAVAAAAAAAAAAkAAAAAAAAABgAAAAAAAAAEAAAAAAAAAAUAAAAAAAAAEgAAAAAAAAAKAAAAAAAAAAgAAAAAAAAADAAAAAAAAAAFAAAAAAAAAAQAAAAAAAAAAwAAAAAAAAAEAAAAAAAAAAkAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAlHSUYmhKSwJLBUsBh5RSlEsCh5RSlIaUXZQoaFNoVX2UKGgraA1oEEsAhZRoEoeUUpQoSwFLBoWUaF2JXZQojAVjb25zdJSMDFBhc3NpbmdfUmF0ZZSMClBhc3NpbmdfVESUjApSdXNoaW5nX1RElIwGUG93ZXI1lIwDQ1BJlGV0lGJoY051hpRSlGhTaGh9lChoK2hsaGNOdYaUUpRlhpRSlGh0aHVodmh3aHh9lGh6fZRofIhzdWKMBWVuZG9nlGgNaBBLAIWUaBKHlFKUKEsBS0KFlGhEiUIQAgAA7AkAAAAAAAAOAwAAAAAAAMoAAAAAAAAApQcAAAAAAAB4AgAAAAAAAKkBAAAAAAAAsgAAAAAAAACWAAAAAAAAAD8AAAAAAAAAvgYAAAAAAABEBgAAAAAAACcGAAAAAAAA1QAAAAAAAAATAAAAAAAAAAoAAAAAAAAAeQQAAAAAAACGAQAAAAAAAGQAAAAAAAAAJQAAAAAAAADXCAAAAAAAADcEAAAAAAAAewIAAAAAAABUAAAAAAAAACkAAAAAAAAAHwAAAAAAAAAeAAAAAAAAAJcGAAAAAAAAfwUAAAAAAACZAAAAAAAAAHsAAAAAAAAAWgAAAAAAAAA0AAAAAAAAAO0HAAAAAAAAfgMAAAAAAACQAAAAAAAAADQAAAAAAAAAnQgAAAAAAADAAgAAAAAAAC4CAAAAAAAApQEAAAAAAAB/AAAAAAAAAGsAAAAAAAAAWwAAAAAAAADmCQAAAAAAANoAAAAAAAAATgAAAAAAAAAzAAAAAAAAABUAAAAAAAAAjQQAAAAAAABOAQAAAAAAALQAAAAAAAAADQAAAAAAAABgCAAAAAAAAPQFAAAAAAAAaQEAAAAAAAC2AAAAAAAAAF4JAAAAAAAAGQMAAAAAAAA4AAAAAAAAADYAAAAAAAAAdwgAAAAAAABPBwAAAAAAAA8DAAAAAAAAfgAAAAAAAAB6AAAAAAAAACcAAAAAAAAAlHSUYowEZXhvZ5RoDWgQSwCFlGgSh5RSlChLAUtCSwaGlGgaiEJgDAAAAAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/zczMzMw8ZEBmZmZmZlZiQAAAAAAAQGdAAAAAAACQZUCamZmZmfljQM3MzMzMfGJAZmZmZmYmZEDNzMzMzOxiQAAAAAAAwF9AmpmZmZmZZkCamZmZmbllQM3MzMzMjGVAAAAAAAAAZECamZmZmclhQAAAAAAAoGNAzczMzMxsYkBmZmZmZoZkQGZmZmZmNmRAmpmZmZlZY0AAAAAAAMBmQGZmZmZmRmVAMzMzMzPTZkAzMzMzM7NiQDMzMzMzc2RAAAAAAADQYkAAAAAAANBkQAAAAAAAsGdAZmZmZmY2ZUBmZmZmZiZkQAAAAAAAwGVAZmZmZmbmZUCamZmZmflnQJqZmZmZaWNAZmZmZmamYkAAAAAAAJBhQM3MzMzMHGJAmpmZmZkZZ0BmZmZmZuZkQM3MzMzMTGFAzczMzMycZUCamZmZmcllQJqZmZmZiWNAMzMzMzPDY0BmZmZmZrZmQM3MzMzMPGJAmpmZmZk5ZUAAAAAAADBiQGZmZmZm9mJAmpmZmZmJY0CamZmZmallQDMzMzMzQ2RAMzMzMzMTYUCamZmZmZliQDMzMzMz42JAzczMzMyMaEAAAAAAAPBkQM3MzMzM3GhAMzMzMzNTYkAzMzMzM1NlQJqZmZmZaWZAZmZmZmbmaEDNzMzMzOxoQDMzMzMzw2VAAAAAAADwZUAzMzMzM3NiQAAAAAAAIGRAAAAAAAAAPkAAAAAAAIBCQAAAAAAAAE1AAAAAAAAAQEAAAAAAAABDQAAAAAAAgEBAAAAAAAAANEAAAAAAAAAsQAAAAAAAAD9AAAAAAAAASUAAAAAAAABBQAAAAAAAAD5AAAAAAACARkAAAAAAAAA1QAAAAAAAADpAAAAAAAAAO0AAAAAAAAA1QAAAAAAAgENAAAAAAAAARkAAAAAAAAA+QAAAAAAAAEBAAAAAAACAQUAAAAAAAAAyQAAAAAAAAEBAAAAAAAAANUAAAAAAAAA7QAAAAAAAgEJAAAAAAACAQkAAAAAAAIBDQAAAAAAAAEhAAAAAAACARUAAAAAAAIBAQAAAAAAAADpAAAAAAAAAMEAAAAAAAAAuQAAAAAAAADlAAAAAAAAAREAAAAAAAAA8QAAAAAAAADhAAAAAAACAQkAAAAAAAABAQAAAAAAAAElAAAAAAAAAOEAAAAAAAABFQAAAAAAAgEBAAAAAAAAAQUAAAAAAAAA5QAAAAAAAADtAAAAAAACAQUAAAAAAAABCQAAAAAAAACBAAAAAAAAAOEAAAAAAAAA+QAAAAAAAgERAAAAAAAAAREAAAAAAAIBFQAAAAAAAgEVAAAAAAAAAO0AAAAAAAIBCQAAAAAAAgEJAAAAAAAAARUAAAAAAAIBFQAAAAAAAAElAAAAAAACAQkAAAAAAAABDQAAAAAAAADlAAAAAAAAA8D8AAAAAAAAAQAAAAAAAABRAAAAAAAAAN0AAAAAAAAAgQAAAAAAAABBAAAAAAAAAIkAAAAAAAAAsQAAAAAAAAABAAAAAAAAAFEAAAAAAAAAmQAAAAAAAAChAAAAAAAAAGEAAAAAAAAAgQAAAAAAAABRAAAAAAAAACEAAAAAAAAAsQAAAAAAAAPA/AAAAAAAAEEAAAAAAAAA0QAAAAAAAAAhAAAAAAAAA8D8AAAAAAAAsQAAAAAAAABBAAAAAAAAANEAAAAAAAAAYQAAAAAAAACRAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAhAAAAAAAAAAAAAAAAAAAAYQAAAAAAAADVAAAAAAAAAN0AAAAAAAAAqQAAAAAAAADNAAAAAAAAAEEAAAAAAAAAAAAAAAAAAADdAAAAAAAAAIkAAAAAAAAAsQAAAAAAAAABAAAAAAAAAKEAAAAAAAAAuQAAAAAAAACBAAAAAAAAAJkAAAAAAAAAIQAAAAAAAACxAAAAAAAAAKEAAAAAAAAAcQAAAAAAAADhAAAAAAAAAAAAAAAAAAAA1QAAAAAAAACJAAAAAAAAAGEAAAAAAAAAQQAAAAAAAABRAAAAAAAAAMkAAAAAAAAAkQAAAAAAAACBAAAAAAAAAKEAAAAAAAAAUQAAAAAAAABBAAAAAAAAACEAAAAAAAAAQQAAAAAAAACJAAAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAA8D8AAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAANVl/FgEHLkCjHj0bvnYgQOKU9bs0dhlA+es5a5/zH0CWG30G3WUeQP3JNY8HfydAxqMrLxApGkAtdUtpT8ImQLfSu8l0iSFA0QlVbDUdLkAe4uGxOvIyQEvKMV/zaDNAfFeaFN8ZKkBVFbXmeYoZQGlyBlnrMxhAiykM/+0uMED0VZTszYMyQC9jZs7x6yxAoyPzSEnfEECauwvJKN43QKD92ZmC5CtA+KaKdL+aKUBD5X0FrfsJQMWgMuPSqCVAFxk/cs7EJkC81XjrgeMtQMpucWLfoSRAvv+Ar7ZVI0DNuiIz2R8jQO034Gx71yZA/0bNKyuIKEDbGDLxU5AgQCQVXOxvgi9AQhGlrKiiJ0BAfL+XmlYuQDgHA/BHtRtA8fRTBg5SM0Da+0jWzs0nQCouoonhcRxAekleAEwaIECUDxoM880mQNkG6B3lnxxAIpVnUWnJJED/OEsgoCAwQAPOlJA7JypAQHOiTiITNEDPOP4vBnYyQAH3OWiJ6SJAbDrUw2MpM0AusTu1/nopQOo4EUL6QSRAwIxlBD9tLUBdJIeSZG8WQBlwgsOxxzdAWKyzegKAJkDB2EWPBdkpQFURWSu/XSZAE76CSa5hD0CucY53nbMZQJ7zAVBzFTNAbA98yr7iKUBUEBQpJ7A0QJRFcpYmMipAOF7MasVMFkCfrZR4HzAlQDC9xN10rydAlHSUYowJY29uc3RfaWR4lEsAjAprX2NvbnN0YW50lEsBjAZfY2FjaGWUfZR1Ymi/SwFot2i6aLBos4wKX2RhdGFfYXR0cpRdlChot2iwjAlkYXRhLmV4b2eUjApkYXRhLmVuZG9nlIwPZGF0YS5vcmlnX2VuZG9nlIwOZGF0YS5vcmlnX2V4b2eUjApwaW52X3dleG9nlIwGd2VuZG9nlIwFd2V4b2eUaCRljApfaW5pdF9rZXlzlF2UaMpoumjJaLOMBG5vYnOUR0BQgAAAAAAAjAlfZGZfbW9kZWyUR0AUAAAAAAAAjAlfZGZfcmVzaWSUaAuMBnNjYWxhcpSTlGgaQwgAAAAAAABOQJSGlFKUjARyYW5rlGjRaERDCAYAAAAAAAAAlIaUUpRoyGgNaBBLAIWUaBKHlFKUKEsBSwZLQoaUaBqJQmAMAABXkfiCQGOyP5oxtjp+qs0/v5nEOB1YwL+uVqUDEc7Dv62jsseM6LU/klxuGr7FyT81vivqZkSSP56A2/6Ffbg/ARthEHni2j9GFyrK0H+7vxhLHPMuFbm/WVsvBPiluL//4u9E7pi2P//u30I0380/PHjMCndRvD8yl72xLcrJPwQb2ehQeqS/3CngutRauz/RbqkpLJ7FP3YFRzFzhc6/iA3zMSsLlL9yA2VBjTq8v0k6Ni+qf7o/PanvShdLpT8Uyix5Cy+1P2x1BPvUtIQ/zpE+zBNQz79JJqSohXIUv8E/y+ARxLY/f4/dOTVair8wjfMDQPiQv5BHS+ryHdC/qjw4vXdokz8SJxNnyfqqP4UqbKcC6cg/jHEQLlFzwz+k4EwOFWXEv6EmzcnUf5U/GJfO9p67yD9brKTFX1Gyv57qevqvXr+/hGm7kohhxj8lVLR6dbyjPyOZHgvc2ce/wM7zrxl0yT8XlhUR6Zatv1PVgU7Yx8s/AkDUhOXOuD9IxPUcxQizP8KdTDHRA7G/rxIw/CgRtL8JjFkq4J/UPxIhSCIVl7c/UHu7ZZKewz8YTAfT0FjSv0nUbUpcHJU/bfT+5GNG079ubhR23CrAP6xgg0PRkqu/0RN0brkYvb+KR0wKuRvWv7DEs2n1p9O/Spy6IkF2ob/0s5+PTFGwv8En0OhBQMs/e2d2sZNUpz/iiJDm0rMhPyYXCHwnVFe/BMAetwSMLT/gr9dQhEdAP464QvwfST2/I7q6NwhQVL8ogQVBI6JSP/Vypwv5WkA/gxGBdG5nZb+BspOmTbYgv3vZKVJARi8/rZS1MYyTOj//q4j2MMVWv1uRcP4gEjq/RJh7K/PSQT+6j5BfA/JPv7HRvNvunj4/T/LGhrPFQL8H8/ula3lRv+vZ54sX60Y/kQ0g7lacRT9fwYWUr/xbPymJJ8uczDU/cpAotRvuLj+uDrOsH6c5vxNZfpHMKUg/g1srZg0CXj/n080zl+g9P4Bg8Ny4iTy/hmd6KeXEIr/2z/TPZWk9P7WNcB3jgWU/2kEQeFSfSr/8D1I2h7I0v3WiIPdnm0q/01M71IOPTr+oGV0U5LxMP/eQXB/vtU8/4XzthuhdWb+XF/5QputCPzbUsS4vQkk/nL1nAvNxWb8OlYULrVQrP6uiYudxIy8/+e7zPy+UWr8xbDJK36Mlv21Rr/0a3VG/LT9qkxkcRL+DYH5vHbVWv5NB0UVLlkA/DZ3+88seWz+Tpq+o08FXv8GjtIAg0FK/Fia9sAeAZL99jI/zsWViP01fBNrEbEC/y1+iVJ5TYj93qBKvyshMv+5nd+buqTw/U8Ft1ua0RT82WZk0z3ZgP9aw//QJr1w/F7ui6TEvQr9nd9Qw+L1SP2EescPQxlq/8WjckeS+QD+K5ASPKexhv0mEK5Hwc1Q/TD9eBxQedD+gXrFWhuNbPzvsljx3RVo/Ju+tS6rgPD8SxbVmfzJwv0yhC7RGA2+/o2yqIh4eUj+6utMPqmRqP6bLaaYJcis/N3asY8fIRr8dLUjDp2dtP4G5qr7LPmK/iJt+lwMAZb/tQv0gxDBXv21cl+kY02O/Ss4td56qQz+flIpZS0doP+JX8fkTpzE/wl2eWUB0X7+Vhu3g+qlkv1YKPRxgBWa/wcfXU3PDVL9dXQtLCEI0v0Qs6RzTrGS/y5oI+/jISL9f2gW+soxGv6sfWhpW4EU/h49k5QuEZT++OsR8Hno5P5ujf1TKVmm/BS+lYjYAVD+qh0ZD20tSv/IlPWE4D2W/kplzRewhUT9jUxBp5jMyv1GzRNRYc22/7FiQjwNUYT+h9DHWK5Y5P8vl5wG39CK/0YQgIRMUcj/xN5GqtYVbv48MJ6i7RmY/eIfhv24yWD98aQzfZ6pDP+s4sichP12/9Sy4guBoJz9PWkmRa2tiP3Hwl3nnTSe/LsEsLX/ccr/MEQ+SdAthv6bwvyPPkmU/fv1Nnj73cD9P1dwsXI1Tv83JYDt5OV8/j2UYNHpJRr8NyKrwxuZTP5WbWIUu4Uc/G+RqC5ZFCz/9KejSGtA+PxA8I5yzBDe/9EQXUPvbbD++wm04789SvzlD51V8OGA/KldNOjnkYb/Yo9QovEZxv/mSypYhbGC/jRg8vWskYz8rV+GSSKl5P70O/AadSUY/hrM42pgXXb+/oG1os2RlvzAkthkmY0y/1Qn+QketZL+fYl8VFm9SP6u32lET71I/19LFprc/TT8HkzOTDH1UP9moAmpgB2K/pfWNkFLiab8tmAd00y9rv5fshyclKDM/KeVr2UhSY78wvihCznD3PurJhhcfxHI/4X3H34jpab80d/mfKidwv1LztTMddjO/4wfBeaPiZL+oEfo0dp1sP3W3y4KGn2S/dlLdQf1VPj9UQvJla41mv4c3G3zQ2mC/xVd370dnFr88OfBc6Qllv+q0l0YG62O/v52zFE8mdD+eopYO7ipwP7b862sP2Ea/A8CBtbW1bz9jbHDtmsRWv8VMN2zFE3a/FQqmRjvpdz9KGJZMwmU/P25tA3N76V8/MB1C6oFbND9Ls8lTRZMevwDKvuYe1nE/+GWgNt0EMj8b6ZOej8hVP+FSAAfZYG2/NakXf4gSWz9F+pHCnxpkP0EjqSMzSkK/9Gl1wi1OYz+DGDaq47R0v0JEzknkEXc/ELXtqFrTZD+WGKMuT6RRvwU1h5KWZTm/4geRL8gRUb+5MUs85GxtP3SoL0ZSP1A/gEzPCEotJj8qxR8k7/phP2Rip203z0i/0M0+CvSESj+PC/PNJ0llv4qFdmXC1Em/h5/68wmQVr++pJeuV+eRPxDE5I2zSqA/iuZzzZkuqr/UCdH9W9qcP2nWiRig86m/PnAkx1WqmT95eaQ9NbmgPyk3E8NZTa2/vylTcoDyoD+cBY1a/jOPP5kqb9jdQ4E/w4PmrNhQfz+eVRz3G86VP95PpXgF26e/+K2cXV5VqL/JlpKf0lWRP199+YgMmoQ/8P2C6VEusL9Yr/gv5lOmv6RsNHOt5mC/ZRhO2x7Wkj+61Mfz9Qywv7UcvzgYZ6Q/pJbHX4l3mT96a5OUAlitv5L01wJdp7C/i7bMeG0Qlz9at03gxxKbPyx9iyXmVZw/cUNqJts7rr9LeW+6OhGvv1kQ+w95v5o/pMc1VlJUkD8RsPY2TUOYP1jK2H3wdZM/Kucgrb7AqL84oZUkrvd7P7I/lrCkI5c/UiwLgS+hqL986b8AE2edP9a2spVZnpY/uaKWqZUZqb/HtDmh43qaP4xBp2zuzYk/3GJUH3M4lz/xvydRG/p7P+0J5ek/f4o/GNUIjm75nD91Uy3OJ6iEPxL/oO5XmZQ/erQHOKsMrb+AMlSKWYWVPxCONhVqJaI/mxh1/xTbYz9TUHx6frCUP9dYpMbVMZU/G/VNYP6YlD/T47VZBeujPzSSOpKfWaA/sEwKeLX7sr9zARoxJeiQP0FMwqMWB2U/9zm2owkolD/S/CEP0wOhP0coas+y8Zs/BqQiGyYirr9EL2eqbPFXP4IDJIN6C2S/+j57ZjDIar/3Ccy9RHBtvwcEXWht21m/KZMz5eec8T7aGA+hi1B0vw6gWlNheU8/wrh8CGlqU794U2AJHydWP04w00/+O3E/2mHTupd1cj9fIayNos5LP30choY+02G/BBKbFcm/ab86oU91TEppP0nWEabkaHA/fOWBy7ikaj8bfMc9/W5uvw/XCPuU734/adti9buZNj+nmF+0ccVGP+otHH3kZnu/24EungbpWb8oOte4XDtYPxVAVzSj3Gg/AWLIMOa8aL8N87486sFlv4d3pkwg4mG/mapybUJyRz95TjMKtDBQPzR252zGRXS/sxp73LhuZz+6Muz8Lj0Rv13AZJV3/WQ/Vfgb+A4bV7+hbCwYIthvP3AApZ/du1S/JW+yE/34Sr99HSyjzEVvv2Xu/Oqydle/U9WdQTWCV7+KEeHZrjJbvzGafkCrPmE/3bZXYQdsVD/W8q5RZJh1P8k1rCT2t3M/OSnLSobaXb9JkAuiSSx2P3PL22/fFj2/XEHkS8TQP78i1UEQhXxjPx4apeobK3G//71vhskFgz/sk6fwIUFmv6m7a7poiCk/Ys8Y5OUZZ79uvnAkBLF2vzukR/l683O/G1sfSjIHeD9pMUWLD/ZVv5wkXMF0YnE/Cq1b/A9XLj8GWYGGA5R4v6gRR/0rtES/kz7gGa8ZUT+UdJRijBVub3JtYWxpemVkX2Nvdl9wYXJhbXOUaA1oEEsAhZRoEoeUUpQoSwFLBksGhpRoGolCIAEAAFvm+cfX1fo/wCfTQL6hhL/0IsVePJVbP9UAwXk+DXe/heF/3TI8kr/bfYMeuFEZv8An00C+oYS/ts81rj5XFj8DzuOlULYWv7NLF93YGAK/ZP4DBW86H78okTBkVy4Nv/QixV48lVs/A87jpVC2Fr+IQ+7g4m00P56NdzKEkio/xcDb+li96z6w0bK0N4gEP9UAwXk+DXe/s0sX3dgYAr+ejXcyhJIqP4PUnVE7xj8/U0xpbBrIB7+ZD7sGEqgAP4Xhf90yPJK/ZP4DBW86H7/FwNv6WL3rPlNMaWwayAe/KT3Soi70tD/eImoYMSVev9t9gx64URm/KJEwZFcuDb+w0bK0N4gEP5kPuwYSqAA/3iJqGDElXr/lKGdXGHNIP5R0lGKMFXdleG9nX3Npbmd1bGFyX3ZhbHVlc5RoDWgQSwCFlGgSh5RSlChLAUsGhZRoGolDMEQlIp+vc5VAiKBU3d9MU0BP57MDrW9EQM87sc4DakJAoohiZUX9C0BR6Cod/7ToP5R0lGJ1Ymi/SwFowl2UjA5fZGF0YV9pbl9jYWNoZZRdlCiMDGZpdHRlZHZhbHVlc5SMBXJlc2lklIwGd3Jlc2lklGVo32jijAZfdXNlX3SUiGjAfZSMFl93ZXhvZ19zaW5ndWxhcl92YWx1ZXOUaOmMCGRmX21vZGVslEdAFAAAAAAAAIwIZGZfcmVzaWSUaNSMCGNvdl90eXBllIwJbm9ucm9idXN0lIwIY292X2t3ZHOUfZSMC2Rlc2NyaXB0aW9ulIxXU3RhbmRhcmQgRXJyb3JzIGFzc3VtZSB0aGF0IHRoZSBjb3ZhcmlhbmNlIG1hdHJpeCBvZiB0aGUgZXJyb3JzIGlzIGNvcnJlY3RseSBzcGVjaWZpZWQulHN1YowHX19kb2NfX5RY3QMAAAogICAgUmVzdWx0cyBjbGFzcyBmb3IgZm9yIGFuIE9MUyBtb2RlbC4KCiAgICBQYXJhbWV0ZXJzCiAgICAtLS0tLS0tLS0tCiAgICBtb2RlbCA6IFJlZ3Jlc3Npb25Nb2RlbAogICAgICAgIFRoZSByZWdyZXNzaW9uIG1vZGVsIGluc3RhbmNlLgogICAgcGFyYW1zIDogbmRhcnJheQogICAgICAgIFRoZSBlc3RpbWF0ZWQgcGFyYW1ldGVycy4KICAgIG5vcm1hbGl6ZWRfY292X3BhcmFtcyA6IG5kYXJyYXkKICAgICAgICBUaGUgbm9ybWFsaXplZCBjb3ZhcmlhbmNlIHBhcmFtZXRlcnMuCiAgICBzY2FsZSA6IGZsb2F0CiAgICAgICAgVGhlIGVzdGltYXRlZCBzY2FsZSBvZiB0aGUgcmVzaWR1YWxzLgogICAgY292X3R5cGUgOiBzdHIKICAgICAgICBUaGUgY292YXJpYW5jZSBlc3RpbWF0b3IgdXNlZCBpbiB0aGUgcmVzdWx0cy4KICAgIGNvdl9rd2RzIDogZGljdAogICAgICAgIEFkZGl0aW9uYWwga2V5d29yZHMgdXNlZCBpbiB0aGUgY292YXJpYW5jZSBzcGVjaWZpY2F0aW9uLgogICAgdXNlX3QgOiBib29sCiAgICAgICAgRmxhZyBpbmRpY2F0aW5nIHRvIHVzZSB0aGUgU3R1ZGVudCdzIHQgaW4gaW5mZXJlbmNlLgogICAgKiprd2FyZ3MKICAgICAgICBBZGRpdGlvbmFsIGtleXdvcmQgYXJndW1lbnRzIHVzZWQgdG8gaW5pdGlhbGl6ZSB0aGUgcmVzdWx0cy4KCiAgICBTZWUgQWxzbwogICAgLS0tLS0tLS0KICAgIFJlZ3Jlc3Npb25SZXN1bHRzCiAgICAgICAgUmVzdWx0cyBzdG9yZSBmb3IgV0xTIGFuZCBHTFcgbW9kZWxzLgoKICAgIE5vdGVzCiAgICAtLS0tLQogICAgTW9zdCBvZiB0aGUgbWV0aG9kcyBhbmQgYXR0cmlidXRlcyBhcmUgaW5oZXJpdGVkIGZyb20gUmVncmVzc2lvblJlc3VsdHMuCiAgICBUaGUgc3BlY2lhbCBtZXRob2RzIHRoYXQgYXJlIG9ubHkgYXZhaWxhYmxlIGZvciBPTFMgYXJlOgoKICAgIC0gZ2V0X2luZmx1ZW5jZQogICAgLSBvdXRsaWVyX3Rlc3QKICAgIC0gZWxfdGVzdAogICAgLSBjb25mX2ludF9lbAogICAglHViLg==", "type": "binary"}] \ No newline at end of file diff --git a/heisman_project/heisman_model/Data_Cleaning/__pycache__/model_data_clean.cpython-39.pyc b/heisman_project/heisman_model/Data_Cleaning/__pycache__/model_data_clean.cpython-39.pyc index 8629ff9..3cf8da4 100644 Binary files a/heisman_project/heisman_model/Data_Cleaning/__pycache__/model_data_clean.cpython-39.pyc and b/heisman_project/heisman_model/Data_Cleaning/__pycache__/model_data_clean.cpython-39.pyc differ diff --git a/heisman_project/heisman_model/Data_Wrangling/__pycache__/CPI_Ratings.cpython-39.pyc b/heisman_project/heisman_model/Data_Wrangling/__pycache__/CPI_Ratings.cpython-39.pyc index 89488a7..56de998 100644 Binary files a/heisman_project/heisman_model/Data_Wrangling/__pycache__/CPI_Ratings.cpython-39.pyc and b/heisman_project/heisman_model/Data_Wrangling/__pycache__/CPI_Ratings.cpython-39.pyc differ diff --git a/heisman_project/heisman_model/Data_Wrangling/__pycache__/Get_Weekly_Win_Percent.cpython-39.pyc b/heisman_project/heisman_model/Data_Wrangling/__pycache__/Get_Weekly_Win_Percent.cpython-39.pyc index 22c2967..8d709d0 100644 Binary files a/heisman_project/heisman_model/Data_Wrangling/__pycache__/Get_Weekly_Win_Percent.cpython-39.pyc and b/heisman_project/heisman_model/Data_Wrangling/__pycache__/Get_Weekly_Win_Percent.cpython-39.pyc differ diff --git a/heisman_project/heisman_model/Data_Wrangling/__pycache__/Quarterback_Stats.cpython-39.pyc b/heisman_project/heisman_model/Data_Wrangling/__pycache__/Quarterback_Stats.cpython-39.pyc index 065d3d3..5979ea4 100644 Binary files a/heisman_project/heisman_model/Data_Wrangling/__pycache__/Quarterback_Stats.cpython-39.pyc and b/heisman_project/heisman_model/Data_Wrangling/__pycache__/Quarterback_Stats.cpython-39.pyc differ diff --git a/heisman_project/heisman_model/__pycache__/__init__.cpython-39.pyc b/heisman_project/heisman_model/__pycache__/__init__.cpython-39.pyc index f3dc7ca..7e7c916 100644 Binary files a/heisman_project/heisman_model/__pycache__/__init__.cpython-39.pyc and b/heisman_project/heisman_model/__pycache__/__init__.cpython-39.pyc differ