-
Notifications
You must be signed in to change notification settings - Fork 0
/
MN_exhustive_ttest_mut_prism.R
588 lines (526 loc) · 29.3 KB
/
MN_exhustive_ttest_mut_prism.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
# adding drive attaris and prism for this analysis
# ko gene of achiles ataris and prism have to be limited to metaboic genes but for partnering genes in an additional version of data
# driven and even for our algorithm we can search for all genes with mutation in more than 2 cell lines in each cancer types and not
# only the metabolic ones, in addition for better results the mcmc sampling approach must be done
# importnat note is that I have to consider those cell lines which were not constructed using iMAT, and all elemetns of their KO_FBA
# file vector elements are nan so they will translate to 1 when they should be eleminated
rm(list = ls())
library("dplyr")
# loading data
gen_ls = read.csv('../MetabolicSLInput/data/tb_gene_ls.csv')
KO_FBA = read.csv('../MetabolicSLOutput/KO_res_446_ttestV.csv'); rownames(KO_FBA) = gen_ls$Var1;
KO_FBA = data.frame(t(KO_FBA))
rownames(KO_FBA) = gsub('_', '-',rownames(KO_FBA))
cantyp = read.csv('../MetabolicSLInput/data/cantyp.csv')
maf_met = read.csv('../MetabolicSLInput/data/maf_met_ge.csv')
maf_met$DepMap_ID = gsub('_', '-', maf_met$DepMap_ID)
sampleInfo <- read.csv("../MetabolicSLInput/data/sample_info.csv", stringsAsFactors = FALSE, header = TRUE)
# achiles = readRDS('../MetabolicSLInput/data/Achilles_gene_dependency.rds')
# achiles = t(readRDS('../MetabolicSLInput/data/DRIVE_ATARiS_data.rds'))
#
prism_info = read.delim('../MetabolicSLInput/data/primary-screen-replicate-collapsed-treatment-info.csv', stringsAsFactors = FALSE, header = TRUE,sep = ',')
# prism <- read.delim("../MetabolicSLInput/data/Drug_sensitivity_(PRISM_Repurposing_Primary_Screen)_19Q4.csv", stringsAsFactors = FALSE, header = TRUE,sep = ',')
prism <- read.delim("../MetabolicSLInput/data/primary-screen-replicate-collapsed-logfold-change.csv", stringsAsFactors = FALSE, header = TRUE,sep = ',')
prism_col = NULL
for (i in colnames(prism)){ prism_col = c(prism_col,unlist(strsplit(i,'..BRD.BRD.',fixed = T))[1])}
# prism has more than 1 target gene for each drug so I need to map drugs to each gene for selection of metabolic genes
colnames(prism) = prism_col
prism_mapping = NULL
for (ps in 2:length(prism_col)){
# print((ps)/length(prism_col)*100)
(prism_col[ps])
pattern = paste(unlist(strsplit(prism_col[ps], split = '\\.'))[1:5], collapse = "-")
id_prs = which(toupper(pattern) == toupper(prism_info$broad_id))
for (id_len in 1:length(id_prs)){
maped_gen = unlist(strsplit(prism_info$target[id_prs[id_len]], ','))
if (!is.null(maped_gen[1]) && !is.na(maped_gen[1])){
if (length(maped_gen) == 1){
add = cbind(ps, prism_info$name[id_prs[id_len]], prism_info$target[id_prs[id_len]], prism_info$dose[id_prs[id_len]])
prism_mapping = rbind(prism_mapping, add)
} else if (length(maped_gen) > 1){
len = length(maped_gen)
for (ele_i in 1:len){
ele = maped_gen[ele_i]
add = cbind(ps, prism_info$name[id_prs[id_len]], ele, prism_info$dose[id_prs[id_len]])
prism_mapping = rbind(prism_mapping, add)
}
}
}
}
}
prism_mapping = data.frame(prism_mapping)
colnames(prism_mapping) = c('drug_prism_id', 'drug_info', 'target_info', 'dose')
# find prism metabolic gens for subseting prism based on it then subset prism data set of primary treatmet and extend it for target genes
prism_mapping_met = prism_mapping[prism_mapping$target_info %in% gen_ls$Var1, ]
# make all drug-gene combinations
prism_mapping_met = prism_mapping_met[order(prism_mapping_met$target_info), ]
prism_met = prism[, as.numeric(prism_mapping_met$drug_prism_id)]
colnames(prism_met) = paste(prism_mapping_met$drug_info, prism_mapping_met$target_info, sep = '==')
prism_mapping_met = cbind(prism_mapping_met, Prism_colnames = colnames(prism_met))
rownames(prism_met) = prism$X
# cell lines
intr_cel = intersect(rownames(prism_met), rownames(KO_FBA))
prism_met = prism_met[rownames(prism_met) %in% intr_cel,]
prism_met = prism_met[order(rownames(prism_met)),]
KO_FBA = KO_FBA[rownames(KO_FBA) %in% intr_cel,]; rm(intr_cel)
KO_FBA = KO_FBA[order(rownames(KO_FBA)),]
# make map of cell lines names and diseases by a two col df
pd_cel = data.frame(cbind(primary_disease = sampleInfo$primary_disease[match(rownames(prism_met)
, sampleInfo$DepMap_ID)], DepMap_ID = rownames(prism_met)))
write.csv(prism_mapping_met, '../MetabolicSLOutput/prism_mapping_met.csv')
maf_met = maf_met[maf_met$DepMap_ID %in% rownames(KO_FBA),]
source('./code/func__tans_dom__get_sym.R')
# table(pri_fre_ac$pd)
ac_cantyp = ach_can_ord(pd_cel, cantyp$cancer);
# sampleInfo$primary_disease[match(ac_cantyp$`Bile Duct Cancer`, sampleInfo$DepMap_ID)]
altn = 'less'
thre = 2
# parallelization parameters
# install.packages('foreach')
# BiocManager::install('foreach')
library('foreach')
nrCores = parallel::detectCores() - 4
# nrCores = nrCores[1]-1 #not to overload your computer
# nrCores = 4
if(Sys.info()['sysname'] != "Windows") {
# install.packages("doMC")
library(doMC)
registerDoMC(nrCores)
getDoParWorkers()
} else {
# install.packages('doParallel')
library(doParallel)
cl <- makeCluster(nrCores)
registerDoParallel(cl)
}
# parallel PRISM ####
fin_can = NULL
fin_can = foreach(can_i= 1:(length(ac_cantyp)), .combine=rbind) %dopar%{
# for (can_i in c(6,7,9,12,14)){
# print(rep('###', 10));print(cantyp$X1[can_i])
can = names(ac_cantyp[can_i]);
can_cel = ac_cantyp[[can]]
if (length(can_cel) >= 4){
# tmp_mut = mutbck_ls[, srt:end]
tmp_mut = mutbackmkr(unique(gen_ls$Var1), maf_met, can_cel)
# head(rowSums(tmp_mut)[order(rowSums(tmp_mut), decreasing = T)])
# slice achiles for the selected cell lines of the cancer
id_cel = (pd_cel$DepMap_ID %in% can_cel)
KO_PR = prism_met[id_cel, ]
KO_mn = KO_FBA[id_cel, ]
# find nan elements in fba ko matrix and put 1 instead of them
for (mn_i in 1:ncol(KO_mn)){
na_id = is.na(KO_mn[,mn_i])
KO_mn[na_id ,mn_i] = 1
}
rm(id_cel)
can_tbl = NULL;
# find each cancer A and B genes
id_GnA = which(rowSums(tmp_mut) >= thre)
if (length(id_GnA) > 0){
GnA = names(id_GnA)
GnB = unique(colnames(KO_PR))
for(i in 1:length(GnA)){
# print(i/length(GnA)*100)
# celselector function will find each gene mut and not_mut cell liens for statistical test in next step
res_cel = celselector(GnA[i], tmp_mut)
for (j in 1:length(GnB)){
# ttest
t_res = NULL
t_res = tw_tst_prism(res_cel, GnB[j], KO_PR, KO_mn, altn, thre)
if (!is.na(t_res[1])){
if (!is.na(t_res$ttst_obs$p.value)){
can_tbl = rbind(can_tbl , cbind('cancer' = can, 'Mutated_gene' = GnA[i], 'KO_gene' = unlist(strsplit(GnB[j], '=='))[2]
, 'KO_gene_drug' = GnB[j], 'No_mut' = length(res_cel$mut), 'No_not_mut' = length(res_cel$not_mut)
, 'ttst_obs_stat' = t_res$ttst_obs$statistic, 'ttst_obs_pvl' = t_res$ttst_obs$p.value
# , 'wtst_obs_stat' = t_res$wtst_obs$statistic, 'wtst_obs_pvl' = t_res$wtst_obs$p.value
, 'ttst_pre_stat' = t_res$ttst_pre$statistic, 'ttst_pre_pvl' = t_res$ttst_pre$p.value
# , 'wtst_pre_stat' = t_res$wtst_pre$statistic, 'wtst_pre_pvl' = t_res$wtst_pre$p.value
)
)
} else {t_res = NULL}
}
}
}
write.csv(can_tbl, file = paste0('../MetabolicSLOutput/', can,'_PRISM_mn_w&t_tst_cons.csv'))
can_tbl
}
# print(paste0(round(can_i / nrow(cantyp) * 100, 1), ' % current cancer'))
}
}
# doMC::stopImplicitCluster()
stopCluster(cl)
registerDoSEQ()
write.csv(fin_can, file = '../MetabolicSLOutput/fin_can_at_mn_w&ttst_cons_prism.csv')
fin_can = data.frame(fin_can)
# read the file of each cancer adjust them and agian write them in the same place
fname = list.files(pattern ='_PRISM_mn_w&t_tst_cons.csv', '../MetabolicSLOutput/')
slscan_prism_fdr = NULL
for(f_i in 1:length(fname)){
print(f_i / length(fname))
tmp = data.frame(NULL)
tryCatch({
tmp = read.csv(paste0('../MetabolicSLOutput/',fname[f_i]))
}, error = function(e) {
if (grepl("first five rows are empty: giving up", e)) {
tmp = data.frame()
message("The file is empty.")
} else {
stop(e)
}
})
if (nrow(tmp) != 0){
tmp = tmp[,-1]
colnames(tmp) = c("cancer","Mutated_gene","KO_gene", 'KO_gene_drug',"No_mut","No_not_mut","ttst_PRISM_stat", "ttst_PRISM_pvl"
# ,"wtst_PRISM_stat", "wtst_PRISM_pvl",
,"ttst_metabolic_stat", "ttst_metabolic_pvl"
# , "wtst_metabolic_stat", "wtst_pre_pvl"
)
tmp = cbind(tmp
, ttst_PRISM_fdr = p.adjust(as.numeric(tmp$ttst_PRISM_pvl), method = 'fdr')
, ttst_metabolic_fdr = p.adjust(as.numeric(tmp$ttst_metabolic_pvl), method = 'fdr'))
# tmp = cbind(tmp
# , ttst_achiles_fdr = (as.numeric(tmp$ttst_achiles_pvl))
# , ttst_metabolic_fdr = (as.numeric(tmp$ttst_metabolic_pvl)))
name = unlist(strsplit(fname[f_i], split = '_PRISM_mn_w&t_tst_cons.csv'))[1]
write.csv(tmp, paste0('../MetabolicSLOutput/',name, '_PRISM_mn_w&t_tst_cons_fdr.csv'))
slscan_prism_fdr = rbind(slscan_prism_fdr, tmp)
}
}; #rm(tmp)
# adj_final_all_ac = subset(final_all_ac, final_all_ac$fdr_tt <= 0.05)
#### SL-scan hypergeom ####
gene_ls_PRISM = list()
fname = list.files(pattern ='_PRISM_mn_w&t_tst_cons_fdr.csv', '../MetabolicSLOutput/')
cantyp_hyp = data.frame(matrix(NA, nrow = length(fname), ncol = 6))
colnames(cantyp_hyp) = c('cancer', 'hypergeom', 'no_SL_MN', 'no_SL_prism', 'overlp', 'total')
SL_drug = NULL
for (cn in 1:length(fname)){
print(cn/length(fname)*100)
cantyp_hyp$cancer[cn] = unlist(strsplit(fname[cn], '_PRISM_mn_w&t_tst_cons_fdr.csv')[1])
tmp = read.csv(paste0('../MetabolicSLOutput/',fname[cn]))
driver = unique(tmp$Mutated_gene); KO_gene = unique(tmp$KO_gene)
gene_ls_PRISM[[cantyp_hyp$cancer[cn]]] = list(driver = driver, KO_gene = KO_gene)
mn = which(as.numeric(tmp$ttst_metabolic_fdr) <= 0.05)
prsm = which(as.numeric(tmp$ttst_PRISM_pvl) <= 0.05)
SL_drug = rbind(SL_drug, tmp[intersect(mn, prsm),])
cantyp_hyp$overlp[cn] = length(intersect(mn, prsm))
# View(tmp[intersect(mn, prsm),])
cantyp_hyp$no_SL_prism[cn] = length(prsm)
cantyp_hyp$no_SL_MN[cn] = length(mn)
cantyp_hyp$total[cn] = nrow(tmp)
cantyp_hyp$hypergeom[cn] = phyper(cantyp_hyp$overlp[cn]-1, cantyp_hyp$no_SL_MN[cn]
, cantyp_hyp$total[cn]-cantyp_hyp$no_SL_MN[cn]
, cantyp_hyp$no_SL_prism[cn], lower.tail = FALSE)
}
unique_drg = unlist(strsplit(SL_drug$KO_gene_drug, "=="))
drug_ls_repur = NULL
for (i in seq(1,length(unique_drg),2)){
drug_ls_repur = c(drug_ls_repur, unique_drg[i] )
}; drug_ls_repur = unique(drug_ls_repur)
SL_drug = (cbind(SL_drug[,-ncol(SL_drug)], ttst_metabolic_fdr = as.numeric(SL_drug$ttst_metabolic_fdr)))
write.csv(cantyp_hyp, '../MetabolicSLOutput/hyper_table_fdrcorrect_cons_PRISM.csv')
SL_drug$ttst_metabolic_fdr = formatC(SL_drug$ttst_metabolic_fdr, format = "e", 3); SL_drug$ttst_PRISM_pvl = formatC(SL_drug$ttst_PRISM_pvl, format = "e", 3)
write.csv(SL_drug, '../MetabolicSLOutput/SLscan_drug_fdrcorrect_cons_PRISM.csv')
#### fastSL hypergeom ####
# library(tibble)
gen_ls = read.csv('../MetabolicSLOutput/tb_gene_ls.csv')
list.files(pattern = 'R24_iMAT_cons_fastSL' ,'../MetabolicSLOutput/', ignore.case = T)
R24_iMAT_gls = read.csv("../MetabolicSLOutput/R24_iMAT_cons_gls.csv")
R24_iMAT_fastSL = read.csv("../MetabolicSLOutput/R24_iMAT_cons_fastSL.csv")
can_ls = NULL
for (i in seq(1,ncol(R24_iMAT_fastSL),2)){ can_ls[i] = (unlist(strsplit(colnames(R24_iMAT_fastSL[i]), "[.|_]"))[1])}
fname = list.files(pattern ='_PRISM_mn_w&t_tst_cons_fdr.csv', '../MetabolicSLOutput/')
cantyp_hyp_fsl = data.frame(matrix(NA, nrow = length(fname), ncol = 7))
colnames(cantyp_hyp_fsl) = c('cancer', 'hypergeom', 'no_SL_MN', 'no_SL_psrm', 'no_SLscan','overlp', 'total')
chek_concordance_ttl = NULL
for(i in 1:length(fname)){
print(i)
can = unlist(strsplit(fname[i], '_PRISM_mn_w&t_tst_cons_fdr.csv')[1])
rm(thr_fdr, overlap, tmp_ac, id, sl, col1, col2, srt , endd, total, tmp_g, tmp_gls)
tmp_g = gen_ls$Var1[gen_ls$Var2 %in% R24_iMAT_gls[,i]]
tmp_gls = unique(tmp_g[!is.na(tmp_g)])
# total = ((total * (total - 1))/2)
# sl comparison of fastsl algo with achiles results
srt = grep(unlist(strsplit(can, " "))[1], can_ls); endd = srt + 1
col1 = entrz2hgnc(paste0(R24_iMAT_fastSL[,srt],'.1'), gen_ls)
col2 = entrz2hgnc(paste0(R24_iMAT_fastSL[,endd],'.1'), gen_ls)
sl = data.frame(cbind(col1,col2))
sl = sl[!is.na(sl$col1), ]; sl = sl[!is.na(sl$col2), ]
id = grep(unlist(strsplit(fname[i],'Cancer'))[1], fname)
if (length(id) != 0){
tmp_ac = read.csv(paste0('../MetabolicSLOutput/',fname[id]))
tmp_driver = intersect(unique(tmp_ac$Mutated_gene), tmp_gls)
tmp_ko = intersect(unique(tmp_ac$KO_gene), tmp_gls)
tmp_drg = unique(prism_mapping_met$drug_info[prism_mapping_met$target_info %in% tmp_ko])
total = expand.grid(driver = (tmp_driver) , ko_gene = tmp_ko)
# tmp_ac = length(unique(tmp_ac$KO_gene_drug)) *length(unique(tmp_ac$Mutated_gene))
cantyp_hyp_fsl$cancer[i] = can
cantyp_hyp_fsl$total[i] = 0
if (nrow(total)>0){
chek_concordance = cbind(total, prism = NA, MN = NA, slscan = NA)
for (chec_i in 1:nrow(chek_concordance)){
chck_prsm = intersect(which(chek_concordance$driver[chec_i] == tmp_ac$Mutated_gene)
,which(chek_concordance$ko_gene[chec_i] == tmp_ac$KO_gene))
if (length(chck_prsm) != 0 ){
if (any(tmp_ac$ttst_metabolic_fdr[chck_prsm] <= 0.05)){chek_concordance$slscan[chec_i] = "YES"} else {chek_concordance$slscan[chec_i] = "NO"}
if (any(tmp_ac$ttst_PRISM_pvl[chck_prsm] <= 0.05)){chek_concordance$prism[chec_i] = "YES"} else {chek_concordance$prism[chec_i] = "NO"}
}
chck1 = intersect(which(chek_concordance$driver[chec_i] == sl$col1), which(chek_concordance$ko_gene[chec_i] == sl$col2))
chck2 = intersect(which(chek_concordance$driver[chec_i] == sl$col2), which(chek_concordance$ko_gene[chec_i] == sl$col1))
if (length(chck1) != 0 | length(chck2) != 0){
chek_concordance$MN[chec_i] = "YES"
print("YES ............................")
}
}
chek_concordance_ttl = rbind(chek_concordance_ttl, cbind(can, chek_concordance))
# prism_sig = intersect((tmp_ac$Mutated_gene %in% tmp_driver), (tmp_ac$KO_gene_drug, "==") %in% tmp_drg)
# hyper_geom test
cantyp_hyp_fsl$overlp[i] = length(which(chek_concordance$MN == "YES"))
cantyp_hyp_fsl$no_SL_psrm[i] = length(which(chek_concordance$prism == "YES"))
cantyp_hyp_fsl$no_SLscan[i] = length(which(chek_concordance$slscan == "YES"))
cantyp_hyp_fsl$no_SL_MN[i] = length(which(!is.na(chek_concordance$MN)))
cantyp_hyp_fsl$total[i] = nrow(chek_concordance)
cantyp_hyp_fsl$hypergeom[i] = phyper(cantyp_hyp_fsl$overlp[i]-1, cantyp_hyp_fsl$no_SL_MN[i]
, cantyp_hyp_fsl$total[i]-cantyp_hyp_fsl$no_SL_MN[i]
, cantyp_hyp_fsl$no_SL_psrm[i], lower.tail = FALSE)
}
}
}
write.csv(chek_concordance_ttl, paste0('../MetabolicSLOutput/cons_prism_FastSL_concordance_check.csv'))
#### MCS hypergeom ####
gen_ls = read.csv('../MetabolicSLOutput/tb_gene_ls.csv')
list.files(pattern = 'R24_iMAT_cons_mcs.csv' ,'../MetabolicSLOutput/', ignore.case = T)
R24_iMAT_gls = read.csv("../MetabolicSLOutput/R24_iMAT_cons_gls.csv")
R24_iMAT_mcs = read.csv("../MetabolicSLOutput/R24_iMAT_cons_mcs.csv")
can_ls = NULL
for (i in seq(1,ncol(R24_iMAT_mcs),2)){ can_ls[i] = (unlist(strsplit(colnames(R24_iMAT_mcs[i]), "[.|_]"))[1])}
fname = list.files(pattern ='_PRISM_mn_w&t_tst_cons_fdr.csv', '../MetabolicSLOutput/')
cantyp_hyp_mcs = data.frame(matrix(NA, nrow = length(fname), ncol = 7))
colnames(cantyp_hyp_mcs) = c('cancer', 'hypergeom', 'no_SL_MN', 'no_SL_psrm', 'no_SLscan','overlp', 'total')
chek_concordance_ttl = NULL
for(i in 1:length(fname)){
print(i)
can = unlist(strsplit(fname[i], '_PRISM_mn_w&t_tst_cons_fdr.csv')[1])
rm(thr_fdr, overlap, tmp_ac, id, sl, col1, col2, srt , endd, total, tmp_g, tmp_gls)
tmp_g = gen_ls$Var1[match(R24_iMAT_gls[,i], gen_ls$Var2)]
tmp_gls = unique(tmp_g[!is.na(tmp_g)])
# total = length(intersect(unique(prism_mapping_met$target_info), tmp_gls))
# total = ((total * (total - 1))/2)
# sl comparison of fastsl algo with achiles results
srt = grep(unlist(strsplit(can, " "))[1], can_ls); endd = srt + 1
col1 = entrz2hgnc(paste0(R24_iMAT_mcs[,srt],'.1'), gen_ls)
col2 = entrz2hgnc(paste0(R24_iMAT_mcs[,endd],'.1'), gen_ls)
sl = data.frame(cbind(col1,col2))
sl = sl[!is.na(sl$col1), ]; sl = sl[!is.na(sl$col2), ]
id = grep(unlist(strsplit(fname[i],'Cancer'))[1], fname)
if (length(id) != 0){
tmp_ac = read.csv(paste0('../MetabolicSLOutput/',fname[id]))
tmp_driver = intersect(unique(tmp_ac$Mutated_gene), tmp_gls)
tmp_ko = intersect(unique(tmp_ac$KO_gene), tmp_gls)
tmp_drg = unique(prism_mapping_met$drug_info[prism_mapping_met$target_info %in% tmp_ko])
total = expand.grid(driver = (tmp_driver) , ko_gene = tmp_ko)
# tmp_ac = length(unique(tmp_ac$KO_gene_drug)) *length(unique(tmp_ac$Mutated_gene))
# tmp_ac = length(unique(tmp_ac$KO_gene_drug)) *length(unique(tmp_ac$Mutated_gene))
cantyp_hyp_mcs$cancer[i] = can
cantyp_hyp_mcs$total[i] = 0
if (nrow(total)>0){
chek_concordance = cbind(total, prism = NA, MN = NA, slscan = NA)
for (chec_i in 1:nrow(chek_concordance)){
chck_prsm = intersect(which(chek_concordance$driver[chec_i] == tmp_ac$Mutated_gene)
,which(chek_concordance$ko_gene[chec_i] == tmp_ac$KO_gene))
if (length(chck_prsm) != 0 ){
if (any(tmp_ac$ttst_metabolic_fdr[chck_prsm] <= 0.05)){chek_concordance$slscan[chec_i] = "YES"} else {chek_concordance$slscan[chec_i] = "NO"}
if (any(tmp_ac$ttst_PRISM_pvl[chck_prsm] <= 0.05)){chek_concordance$prism[chec_i] = "YES"} else {chek_concordance$prism[chec_i] = "NO"}
}
chck1 = intersect(which(chek_concordance$driver[chec_i] == sl$col1), which(chek_concordance$ko_gene[chec_i] == sl$col2))
chck2 = intersect(which(chek_concordance$driver[chec_i] == sl$col2), which(chek_concordance$ko_gene[chec_i] == sl$col1))
if (length(chck1) != 0 | length(chck2) != 0){
chek_concordance$MN[chec_i] = "YES"
print("YES ............................")
}
}
chek_concordance_ttl = rbind(chek_concordance_ttl, cbind(can, chek_concordance))
# hyper_geom test
cantyp_hyp_mcs$overlp[i] = length(which(chek_concordance$MN == "YES"))
cantyp_hyp_mcs$no_SL_psrm[i] = length(which(chek_concordance$prism == "YES"))
cantyp_hyp_mcs$no_SLscan[i] = length(which(chek_concordance$slscan == "YES"))
cantyp_hyp_mcs$no_SL_MN[i] = length(which(!is.na(chek_concordance$MN)))
cantyp_hyp_mcs$total[i] = nrow(chek_concordance)
cantyp_hyp_mcs$hypergeom[i] = phyper(cantyp_hyp_fsl$overlp[i]-1, cantyp_hyp_fsl$no_SL_MN[i]
, cantyp_hyp_fsl$total[i]-cantyp_hyp_fsl$no_SL_MN[i]
, cantyp_hyp_fsl$no_SL_psrm[i], lower.tail = FALSE)
}
}
}
write.csv(chek_concordance_ttl, paste0('../MetabolicSLOutput/cons_prism_MCS_concordance_check.csv'))
#### gmcs hypergeom ####
gen_ls = read.csv('../MetabolicSLOutput/tb_gene_ls.csv')
list.files(pattern = 'R24_iMAT_cons_gmcs.csv' ,'../MetabolicSLOutput/', ignore.case = T)
R24_iMAT_gls = read.csv("../MetabolicSLOutput/R24_iMAT_cons_gls.csv")
R24_iMAT_gmcs = read.csv("../MetabolicSLOutput/R24_iMAT_cons_gmcs.csv")
can_ls = NULL
for (i in seq(1,ncol(R24_iMAT_gmcs),2)){ can_ls[i] = (unlist(strsplit(colnames(R24_iMAT_gmcs[i]), "[.|_]"))[1])}
fname = list.files(pattern ='_PRISM_mn_w&t_tst_cons_fdr.csv', '../MetabolicSLOutput/')
cantyp_hyp_gmcs = data.frame(matrix(NA, nrow = length(fname), ncol = 7))
colnames(cantyp_hyp_gmcs) = c('cancer', 'hypergeom', 'no_SL_MN', 'no_SL_psrm', 'no_SLscan','overlp', 'total')
chek_concordance_ttl = NULL
for(i in 1:length(fname)){
print(i)
can = unlist(strsplit(fname[i], '_PRISM_mn_w&t_tst_cons_fdr.csv')[1])
rm(thr_fdr, overlap, tmp_ac, id, sl, col1, col2, srt , endd, total, tmp_g, tmp_gls)
tmp_g = gen_ls$Var1[match(R24_iMAT_gls[,i], gen_ls$Var2)]
tmp_gls = unique(tmp_g[!is.na(tmp_g)])
# total = length(intersect(unique(prism_mapping_met$target_info), tmp_gls))
# total = ((total * (total - 1))/2)
# sl comparison of fastsl algo with achiles results
srt = grep(unlist(strsplit(can, " "))[1], can_ls); endd = srt + 1
col1 = entrz2hgnc(paste0(R24_iMAT_gmcs[,srt],'.1'), gen_ls)
col2 = entrz2hgnc(paste0(R24_iMAT_gmcs[,endd],'.1'), gen_ls)
sl = data.frame(cbind(col1,col2))
sl = sl[!is.na(sl$col1), ]; sl = sl[!is.na(sl$col2), ]
id = grep(unlist(strsplit(fname[i],'Cancer'))[1], fname)
if (length(id) != 0){
tmp_ac = read.csv(paste0('../MetabolicSLOutput/',fname[id]))
tmp_driver = intersect(unique(tmp_ac$Mutated_gene), tmp_gls)
tmp_ko = intersect(unique(tmp_ac$KO_gene), tmp_gls)
tmp_drg = unique(prism_mapping_met$drug_info[prism_mapping_met$target_info %in% tmp_ko])
total = expand.grid(driver = (tmp_driver) , ko_gene = tmp_ko)
# tmp_ac = length(unique(tmp_ac$KO_gene_drug)) *length(unique(tmp_ac$Mutated_gene))
# tmp_ac = length(unique(tmp_ac$KO_gene_drug)) *length(unique(tmp_ac$Mutated_gene))
cantyp_hyp_gmcs$cancer[i] = can
cantyp_hyp_gmcs$total[i] = 0
if (nrow(total)>0){
chek_concordance = cbind(total, prism = NA, MN = NA, slscan = NA)
for (chec_i in 1:nrow(chek_concordance)){
chck_prsm = intersect(which(chek_concordance$driver[chec_i] == tmp_ac$Mutated_gene)
,which(chek_concordance$ko_gene[chec_i] == tmp_ac$KO_gene))
if (length(chck_prsm) != 0 ){
if (any(tmp_ac$ttst_metabolic_fdr[chck_prsm] <= 0.05)){chek_concordance$slscan[chec_i] = "YES"} else {chek_concordance$slscan[chec_i] = "NO"}
if (any(tmp_ac$ttst_PRISM_pvl[chck_prsm] <= 0.05)){chek_concordance$prism[chec_i] = "YES"} else {chek_concordance$prism[chec_i] = "NO"}
}
chck1 = intersect(which(chek_concordance$driver[chec_i] == sl$col1), which(chek_concordance$ko_gene[chec_i] == sl$col2))
chck2 = intersect(which(chek_concordance$driver[chec_i] == sl$col2), which(chek_concordance$ko_gene[chec_i] == sl$col1))
if (length(chck1) != 0 | length(chck2) != 0){
chek_concordance$MN[chec_i] = "YES"
print("YES ............................")
}
}
chek_concordance_ttl = rbind(chek_concordance_ttl, cbind(can, chek_concordance))
# hyper_geom test
cantyp_hyp_gmcs$overlp[i] = length(which(chek_concordance$MN == "YES"))
cantyp_hyp_gmcs$no_SL_psrm[i] = length(which(chek_concordance$prism == "YES"))
cantyp_hyp_gmcs$no_SLscan[i] = length(which(chek_concordance$slscan == "YES"))
cantyp_hyp_gmcs$no_SL_MN[i] = length(which(!is.na(chek_concordance$MN)))
cantyp_hyp_gmcs$total[i] = nrow(chek_concordance)
cantyp_hyp_gmcs$hypergeom[i] = phyper(cantyp_hyp_fsl$overlp[i]-1, cantyp_hyp_fsl$no_SL_MN[i]
, cantyp_hyp_fsl$total[i]-cantyp_hyp_fsl$no_SL_MN[i]
, cantyp_hyp_fsl$no_SL_psrm[i], lower.tail = FALSE)
cantyp_hyp_gmcs$hypergeom[i] = phyper(cantyp_hyp_gmcs$overlp[i]-1, cantyp_hyp_gmcs$no_SL_MN[i]
, cantyp_hyp_gmcs$total[i]-cantyp_hyp_gmcs$no_SL_MN[i]
, cantyp_hyp_gmcs$no_SL_psrm[i], lower.tail = FALSE)
}
}
}
write.csv(chek_concordance_ttl, paste0('../MetabolicSLOutput/cons_prism_gmcs_concordance_check.csv'))
hyp_test = ls(pattern = 'cantyp_hyp')
for (hy_i in 1:length(hyp_test)){
tmp = get(hyp_test[hy_i])
print(tmp$overlp)
rm(tmp)
}
for (i in 1:length(ls(pattern = '_hyp'))){
tmpn = ls(pattern = '_hyp')[i]
tmp = get(tmpn)
write.csv(tmp, paste0('../MetabolicSLOutput/cons_prism_', tmpn,'.csv'))
}
write.csv(SL_drug, paste0('../MetabolicSLOutput/cons_prism_SL_scan_drugs_overlap.csv'))
# panel boxplots cancer drug ####
maf_met = cbind(maf_met, DepMap_ID = sampleInfo$DepMap_ID[match(maf_met$ccle_name, sampleInfo$CCLE_Name)])
library(reshape2)
library(ggplot2)
for ( i in 1:nrow(SL_drug)){
cancer = SL_drug$cancer[i]
dep_id_cellline = (ac_cantyp[match(cancer, names(ac_cantyp))])
prism_row = (rownames(prism_met) %in% unlist(unname(dep_id_cellline)))
drug_target = SL_drug$KO_gene_drug[i]
prism_col = which(drug_target==colnames(prism_met))[1]
prism_tmp = prism_met[prism_row,prism_col]
names(prism_tmp) = rownames(prism_met)[prism_row]
mut_gene = SL_drug$Mutated_gene[i]
id = intersect(which(mut_gene == maf_met$Hugo_Symbol)
,which("damaging" == maf_met$Variant_annotation))
id = intersect(id, which(cancer == maf_met$primary_disease))
mut_cellline = maf_met$DepMap_ID[id]
x = prism_tmp[names(prism_tmp) %in% mut_cellline]
y = prism_tmp[!(names(prism_tmp) %in% mut_cellline)]
altn = 'less'
ttest = t.test(x, y, altn, var.equal = FALSE)
row_id_l = (rownames(KO_FBA) %in% names(prism_tmp))
KO_FBA_tmp = KO_FBA[row_id_l, (colnames(KO_FBA) %in% SL_drug$KO_gene[i])]
names(KO_FBA_tmp) = rownames(KO_FBA)[row_id_l]
KO_FBA_tmp[is.na(KO_FBA_tmp)] = 1
a = KO_FBA_tmp[names(KO_FBA_tmp) %in% mut_cellline]
b = KO_FBA_tmp[!names(KO_FBA_tmp) %in% mut_cellline]
a = a + runif(length(a), min = 1e-12, max = 1e-11)
b = b + runif(length(b), min = 1e-12, max = 1e-11)
tttt = t.test(a, b, altn, var.equal = FALSE)
if (tttt$p.value < 0.01){
print(paste(i, cancer, ttest$statistic, mut_gene, drug_target, ttest$p.value, sep = " ** "))
print(paste(tttt$statistic, tttt$p.value, sep = " ======= "))
ttest$statistic = formatC(ttest$statistic, format = "e", 2)
ttest$p.value = formatC(ttest$p.value, format = "e", 2)
df = data.frame(variable = c(rep("Mutated_PRISM",length(x)), rep("Not_Mutated_PRISM",length(y))
,c(rep("Mutated_SL-scan",length(a)), rep("Not_Mutated_SL-scan",length(b))))
, value = c(x,y,a,b))
pdf(paste0("../MetabolicSLOutput/SL_drug_BoxPlot_",cancer, "_MUt_",mut_gene
, "_drugTarget_", drug_target , ".pdf"))
plt = ggplot(df, aes(x = variable, y = value, fill = variable)) +
geom_boxplot() +
labs(x = NULL, y = "Data value")+
ggtitle(paste0("t statistic: ",ttest$statistic, " P-value: "
,ttest$p.value, ", drug: ", unlist(strsplit(drug_target, "=="))[1])) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
print(plt)
dev.off()
}
}
# stackbarplot of algorithms of SL prediction ####
rm(stack_plotHyp)
namess = ls(pattern = "_hyp")
stack_plotHyp = NULL
for (i in 1:length(namess)){
tmp_name = namess[i]
tmp = get(tmp_name)
if (i == 1 ){ stack_plotHyp = data.frame(cbind(cancer = tmp$cancer, SL_scan = tmp$overlp))
} else {
ids = match(stack_plotHyp$cancer, tmp$cancer)
tmp = tmp$overlp[ids]; tmp[is.na(tmp)] = 0
stack_plotHyp = cbind(stack_plotHyp, tmp)
colnames(stack_plotHyp)[i+1] = namess[i]
}
}
colnames(stack_plotHyp) = c("Cancers", "SL_scan", "FastSL", "gMCS", "MCS")
stack_plotHyp = stack_plotHyp[order(-as.numeric(stack_plotHyp$SL_scan)),]
colnames(stack_plotHyp)[colnames(stack_plotHyp) == "SL_scan"] = "SL-scan"
# stack_plotHyp$Cancers <- reorder(stack_plotHyp$Cancers, stack_plotHyp$SL_scan)
library(ggplot2)
longformat = reshape2::melt(stack_plotHyp, id.vars = "Cancers", variable.name = "Approaches", value.name = "Log_valid_SL_pairs")
longformat$Log_valid_SL_pairs[is.na(longformat$Log_valid_SL_pairs)] = 0
longformat$Log_valid_SL_pairs = log(as.numeric(longformat$Log_valid_SL_pairs))
cancer_order = unique(longformat$Cancers)
longformat$Cancers <- factor(longformat$Cancers, levels = cancer_order)
png(paste0("../MetabolicSLOutput/dodge_prism_barplot_valid_SL_no.png"),width=1000, height=700)
ggplot(longformat, aes(fill = Approaches, y = exp(Log_valid_SL_pairs), x = Cancers)) +
geom_bar(position = "dodge", stat = "identity") +
ggtitle("Grouped bar plot of SL predicted per cancer group using different approaches") +
scale_y_log10() +
labs(x = NULL, y = "Number of valid predicted SL pairs") +
theme(plot.title = element_text(hjust = 0.5),
axis.text.x = element_text(angle = 45, hjust = 1, size = 15),
plot.margin = unit(c(1, 1, 1, 2), "cm")) +
scale_fill_manual(values = c("red2", "blue2", "green2", "yellow")) + # custom colors
geom_text(aes(label = exp(Log_valid_SL_pairs)), position = position_dodge(width = 1), vjust = -0.5)
dev.off()
# save|load env
# save.image('./env/WS_MN_exh_ttest_cor_cons_prism.rdata')
# load('./env/WS_MN_exh_ttest_cor_cons_prism.rdata')