-
Notifications
You must be signed in to change notification settings - Fork 0
/
SL_pair_prediction_slscan.m
251 lines (229 loc) · 11.4 KB
/
SL_pair_prediction_slscan.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
% ######### chunk 3 - SL-scan implementation using Recon2.v4 and iMAT for SL pair prediction #########
clear
s1 = pwd;
s2 = 'D:\G\thesis\thesis\contextualization\MetabolicSL\code';
if ~strcmp(s1,s2)
cd(s2);
end
clear s1 s2
global CBTDIR
load([CBTDIR filesep 'test' filesep 'models' filesep 'mat' filesep 'Recon2.v04.mat']);
modelR204.description = 'modelR204'; clear CBTDIR;
%changeCobraSolver ('ibm_cplex', 'all');
%changeCobraSolver ('gurobi', 'all');
epsilon = getCobraSolverParams('LP', 'feasTol');
% rxn 2173 must have the following grRules and rules but not mentioned in the
% model properly
idx_wrul = find(contains(modelR204.rules,'()','IgnoreCase',true));
modelR204.rules(idx_wrul) = {'(x(1039)) | (x(1040)) | (x(1041)) | (x(1042)) | (x(1043)) | (x(1044)) | (x(1045)) | (x(1046)) | (x(1047)) | (x(1048)) | (x(1049)) | (x(1050))'};
modelR204.grRules{idx_wrul, 1} = {'(761.1) or (771.1) or (377677.1) or (762.1) or (766.2) or (23632.1) or (766.1) or (771.2) or (759.1) or (768.1) or (760.1) or (765.1)'};
% model correction: genes '6241.1', '6242.1', '50484.1' all must be in grRules of
% 3208, 3209, 3210, 3211 rxns as '(6240.1) and (6241.1 or 50484.1)'
find(ismember(modelR204.genes,'6240.1'));
find(ismember(modelR204.genes,'6241.1'));
find(ismember(modelR204.genes,'50484.1'));
genes = {'6241.1', '6242.1', '50484.1'};
[Reaclist] = findRxnsActiveWithGenes(modelR204, genes);
rxnns = find(ismember(modelR204.rxns,Reaclist)); clear Reaclist;
rxnns = rxnns(1:end-1);
modelR204.grRules(rxnns) = cellstr('(6240.1) and (6241.1 or 50484.1)');
modelR204.rules(rxnns) = cellstr('(x(1764)) & (x(1765) | x(1766))'); clear rxnns;
%changeCobraSolver ('ibm_cplex', 'all');
%changeCobraSolver ('glpk', 'all');
%changeCobraSolver ('gurobi', 'all');
% find modelR204 ATP and biomass rxns to add to contextualized models
atp_idx = find(contains(modelR204.rxnNames,'ATP demand','IgnoreCase',true));
atp_idx1 = find(contains(modelR204.rxns,'ATPM','IgnoreCase',true));
bio_idx = find(contains(modelR204.rxns,'biomass','IgnoreCase',true));
addi_idx = vertcat(bio_idx, atp_idx,atp_idx1);
clear atp_idx bio_idx atp_idx1 options idx_wrul ans genes
% reading expression table
% reading cancer core gene list for 22 cancer of fastcore
T1 = readtable('..\..\MetabolicSLInput\data\rnaData_gymbol_entrz_cel.csv');
gene_ls = T1(2:end,1:2);
tb_gene_ls = gene_ls;
writetable(tb_gene_ls,'../../MetabolicSLOutput/tb_gene_ls.csv');
%mapping of cancer and celllines names
cancer_mapping = vertcat(T1.Properties.VariableNames, T1(1,:));
cancer_mapping(:,1:2) = [];
T1(:,1:2) = []; T1(1,:) = [];
expression.gene = table2cell(gene_ls(:,2 ));
cantyp = table2cell(readtable('..\..\MetabolicSLInput\data\cantyp.csv'));
cel_all = T1.Properties.VariableNames';
mut = readtable('..\..\MetabolicSLInput\data\maf_met_ge.csv');
mut_dep = mut.DepMap_ID;
options.tol = epsilon;
options.core = modelR204.rxns(addi_idx);
options.solver = 'iMAT';
modelR204_cons = RPMI_Medium(modelR204);
gen_cons_FBA = optimizeCbModel(modelR204_cons); gen_cons_FBA.f
%lung cell lines with most sig ko gene CYBRD1
%lng_cel = {'ACH_000335', 'ACH_000610', 'ACH_000844', 'ACH_000869', ...
% 'ACH_000888', 'ACH_000900', 'ACH_000924', 'ACH_000929'};
%lng_celid = find(ismember(T1.Properties.VariableNames, lng_cel(8)));
%T1.Properties.VariableNames(lng_celid )
% preparing KO score for each cell line
% ttl_expressionRxns_all_R24 = [];
%T0 = T1(:,lng_celid);
all_SL = {};
gen_cell_KO = [];
ko_res = cell(size(T1,1),size(T1,2));
%geneee = {'50484.1', '586.1', '54675.1', '686.1', '2628.1', '4706.1'}';
%ko_res_sg = cell(50,2);
%for i=1:size(T0,2)
for i=1:size(T1,2)
%for i=1:28
disp('*********************************************')
disp('loop')
disp(i)
%}
% reaction expression mapping
%expression.value = table2array(T0(:,i));
expression.value = table2array(T1(:,i));
expression.value = str2double(expression.value);
[levels parsedGPRSP] = mapExpressionToReactions(modelR204, expression); % defualt: minMax
options.expressionRxns = levels;
res = {};
for ub_i = 1:10
for lb_i =5:19
disp(((20 - ub_i) * 5))
disp(((20 - lb_i) * 5))
options.threshold_ub = prctile(levels(find(levels > -1)),(20 - ub_i) * 5);
options.threshold_lb = prctile(levels(find(levels > -1)),(20 - lb_i) * 5);
tmpl = createTissueSpecificModel(modelR204_cons, options);
% ckeck for biomass and atp demand rxns activity
id0 = find(contains(tmpl.rxns, options.core{1},'IgnoreCase',true));
id1 = find(contains(tmpl.rxns, options.core{2},'IgnoreCase',true));
tmp_fba= optimizeCbModel(tmpl);
rxn_id = find(contains(tmpl.rxns, 'Biomass_reaction','IgnoreCase',true));
%precursors = findReactionPrecursors(tmpl, rxn_id);
%[prerxn, prerxn_id] = findReactionrxnPrecursors(model, reaction_id);
res{ub_i,lb_i} = tmp_fba.f;
if (tmp_fba.f > (gen_cons_FBA.f/3) & tmp_fba.x([id1]) ~= 0 & length(tmpl.rxns) < length(modelR204_cons.rxns))
break % break lb_i loop
end
end
if (tmp_fba.f > (gen_cons_FBA.f/3) & tmp_fba.x([id1]) ~= 0 & length(tmpl.rxns) < length(modelR204_cons.rxns))
all_SL{1, i} = char(strcat( cel_all{i}));
all_SL{10, i} = ((20 - ub_i) * 5);
all_SL{11, i} = ((20 - lb_i) * 5);
all_SL{3, i} = tmp_fba.f;
all_SL{2, i} = tmpl;
break % break ub_i loop
else
all_SL{1, i} = char(strcat( cel_all{i}));
all_SL{10, i} = 'NA';
all_SL{11, i} = 'NA';
all_SL{3, i} = 0;
all_SL{2, i} = 'NA';
end
end
if ~eq(all_SL{3, i}, 0)
tmp_fba = optimizeCbModel(all_SL{2, i}, 'max', 'one');
rxn_id = (find(tmp_fba.x));
genesList = {};
for i_gr = 1:length(rxn_id)
tmp = rxn_id(i_gr);
if (~isempty(all_SL{2, i}.rules{tmp ,1}))
genesList = [genesList, all_SL{2, i}.genes{find(all_SL{2, i}.rxnGeneMat(tmp,:))}];
end
end
del_gen = genesList';
del_gen = unique(del_gen);
[genels_id, del_geid] = ismember(gene_ls.Var2, del_gen);
del_gen = gene_ls.Var2(genels_id);
clear rxn_id tmp genesList genels_id del_geid
%findGenesFromRxns(model,rxnsList(1))
%disp(find(contains(all_SL{4, i}.rxns,'biomass','IgnoreCase',true)))
%iddddd = find(tmp_fba.x);
%iddddd = all_SL{2, i}.rxns(iddddd);
% replace gene names because some of them are renamed and
% following functions not work properly with modified gene
% names
% find FBA sol of each active genes to construct similar ataris
% achiles matrix score for ttest and cortest
%sample1 = optimizeCbModel(all_SL{4, i}); sample1 = sample1.x;
%tests = 'tTest';
%{
sampleFile = 'samplingf'; option.nStepsPerPoint = 10; option.nPointsReturned = 50; samplerName = 'ACHR';
[modelSampling, samples] = sampleCbModel(all_SL{2, i}, sampleFile, samplerName, option);
id10 = find(contains(modelSampling.rxns,'biomass','IgnoreCase',true));
itr = 1;
%}
for d =1:length(del_gen)
[gnd0, ~] = ismember(all_SL{2, i}.genes, del_gen(d));
%[gnd0, ~] = ismember(geneee , del_gen(d));
if ~isempty(find(gnd0))
[grRatio, grRateKO, grRateWT, hasEffect, delRxns, fluxSolution] = singleGeneDeletion(all_SL{2, i}, 'FBA', del_gen(d));
% if grRatio < .90
%disp(d)
%{
[modelDel,hasEffect,constrRxnNames] = deleteModelGenes(all_SL{2, i},del_gen(d));
sampleFileKO = 'samplingfKO'; option.nStepsPerPoint = 10; option.nPointsReturned = 50; samplerName = 'ACHR';
[modelSamplingKO, samplesKO] = sampleCbModel(modelDel, sampleFileKO, samplerName, option);
idKO = find(contains(modelSamplingKO.rxns,'biomass','IgnoreCase',true));
if isempty(idKO)
[ h, p, ci, stats] = ttest2(zeros(size(samplesKO,2),1)', samples(id10,:));
else
[ h, p, ci, stats] = ttest2(samplesKO(idKO,:), samples(id10,:));
end
%}
ko_gid = find(ismember(gene_ls.Var2, del_gen(d)));
%ko_res{ko_gid, i} = stats.tstat;
%ko_res{itr,1} = stats.tstat
ko_res{ko_gid,i} = grRatio;
%itr = itr + 1;
%gen_ko_sm = horzcat(geneee, ko_res_sg);
%tb_gen_ko_sm = array2table(gen_ko_sm);
%writetable(tb_gen_ko_sm, '../../MetabolicSLOutput/tb_gen_ko_sm.csv');
%{
iiiiid= cell(150,2);
iiiiidi = 0;
for iiii = 1:size(ko_res,1)
if ~isempty(ko_res{iiii, 1})
if ~isnan(ko_res{iiii, 1})
iiiiidi = iiiiidi + 1;
iiiiid{iiiiidi, 1} = gene_ls.Var1(iiii);
iiiiid{iiiiidi, 2} = ko_res{iiii, 1};
end
end
end
tb_iiiiid = array2table(iiiiid);
writetable(tb_iiiiid, '../../MetabolicSLOutput/KO_res_rnd_smple.csv');
%}
% end
end
end
% r = xcorr( ko_res_sg(1:9,1), ko_res_sg(1:9,2))
clear del_gen d gnd0 grRatio grRateKO grRateWT hasEffect delRxns fluxSolution grRatio ko_gid
end
% find exact mutational backgroung of each sample in comparison to the
% GEM used to construct it
all_SL{2, i} = [] ;
if (size(all_SL,2) == 100 )
save('../../MetabolicSLOutput/all_SL_save_100_ttestV.mat ', 'all_SL', '-v7.3');
tb_ko_res = array2table(ko_res); % tb_gen_cell_KO
tb_ko_res.Properties.VariableNames = cel_all(:, 1);
writetable(tb_ko_res,'../../MetabolicSLOutput/KO_res_100_ttestV.csv');
clear tb_ko_res;
elseif (size(all_SL,2) == 200 )
save('../../MetabolicSLOutput/all_SL_save_200_ttestV.mat ', 'all_SL', '-v7.3');
tb_ko_res = array2table(ko_res); % tb_gen_cell_KO
tb_ko_res.Properties.VariableNames = cel_all(:, 1);
writetable(tb_ko_res,'../../MetabolicSLOutput/KO_res_200_ttestV.csv');
clear tb_ko_res;
elseif (size(all_SL,2) == size(ko_res,2) )
save('../../MetabolicSLOutput/all_SL_save_446_ttestV.mat ', 'all_SL', '-v7.3');
tb_ko_res = array2table(ko_res);
tb_ko_res.Properties.VariableNames = cel_all(:, 1);
writetable(tb_ko_res,'../../MetabolicSLOutput/KO_res_446_ttestV.csv');
clear tb_ko_res;
end
end
% saved as ko_res.mat
% all_sl.mat
% merg two table of ko_res of 319 and 446 to make the total one
ko_mrg = table2cell(readtable('..\..\MetabolicSLoutput\KO_res_319_ttestV.csv'));
ko_mrg = horzcat(ko_mrg(:,1:319), ko_res(:,320:446));
cel_all = T1.Properties.VariableNames';
mut = readtable('..\..\MetabolicSLInput\data\maf_met_ge.csv');