diff --git a/_teaching/2024-SS-Machine-Perception.html b/_teaching/2024-SS-Machine-Perception.html
index 4ecf3c7..a5b9e78 100644
--- a/_teaching/2024-SS-Machine-Perception.html
+++ b/_teaching/2024-SS-Machine-Perception.html
@@ -1,6 +1,6 @@
---
title: Machine Perception
-ref: mp2023
+ref: mp2024
description:
semester: Spring 2023
number: 263-3710-00L
@@ -62,384 +62,7 @@
-
-
- slides pt. II
-
-
- Perceptron Visualization Notebook
-
-
-
- Tutorial Implement your own MLP
- slides
- XOR Notebook
- XOR Solutions
- Eye-Gaze Notebook
- Eye-Gaze Solutions
- Tutorial Linear Regr.
- slides
- Linear Regression Notebook
-
- Pen & Paper Backprop.
- exercise
- exercise solution
-
- |
-
-
- 3 |
- 09.03. 10.03. |
-
- Convolutional Neural Networks
- |
-
-
- slides pt. I
-
- slides pt. II
-
-
- Additional material:
-
- RSVP
-
- Cortical Neuron -->
-
-
- |
-
- Tutorial CNNs in Pytorch
- slides
- CNN Notebook
-
- Pen & Paper CNN
- exercise
- exercise solution
- |
-
-
-
-
- 4 |
- 15.03. |
-
- Fully Convolutional Neural Networks
- |
-
- slides
- |
- |
-
-
-
-
- 4 |
- 16.03. |
-
- Recurrent Neural NetworksLSTM, GRU, Backpropagation through time
- |
-
- slides
- |
-
-
- Tutorial RNNs in Pytorch
- slides
- RNN Notebook
-
- Pen & Paper RNN
- exercise
- exercise solution
- |
-
-
-
-
- 5 |
- 23.03. 24.03 |
-
- Generative Models Pt. I: Latent Variable Models Variational Autoencoders, etc.
- |
-
-
- slides pt. I
- slides pt. II
-
- |
-
-
-
- Class Tips for Training I
- slides
-
- Pen & Paper VAE
- exercise
- exercise solution
- |
-
-
-
-
-
- 6 |
- 30.03. 31.03. |
-
- Generative Models Pt. II: Autoregressive Models PixelCNN, PixelRNN, WaveNet, Stochastic RNNs
- |
-
- slides pt. I
- slides pt. II
-
- |
-
- Class Tips for Training II
- slides
- Pen & Paper AR
- exercise
- exercise solution
- |
-
-
-
-
-
- 7 |
- 05.04. 06.04. |
-
- Generative Models Pt. III: Normalizing Flows and Invertible Neural Networks
- |
-
-
- slides NF Pt. I
-
- slides NF Pt. II
-
-
-
- |
-
- Pen & Paper NF
- exercise
- exercise solution
- |
-
-
-
- 8 |
- 12.04. 23.04. |
-
- -- No Class (Easter) --
- |
- |
- |
-
-
-
- 9 |
- 19.04. 20.04. |
-
- Generative Models Pt. IV: Implicit Models Generative Adversarial Networks & Co
- |
-
- slides GAN Pt. I
-
- slides GAN Pt. II
-
- |
-
- Tutorial Exercise Discussion and Euler
- slides PP Backprop&CNN
- slides Euler
- Pen & Paper GAN
- exercise
-
- exercise solution
-
- |
-
-
- 10 |
- 26.04 27.04 |
-
- Generative Models Pt. V: GAN Applications and Diffusion Models
- |
-
- slides GAN Pt. III
-
- slides Diffusion Models
-
- |
-
- Pen & Paper class Diffusion Models
- exercise
-
- exercise solution
-
- |
-
-
- 11 |
- 03.05 04.05 |
-
- Implicit Surfaces and Neural Radiance Fields
- |
-
- slides NIR Pt. I
-
- slides NIR Pt. II
-
- |
-
- Tutorial Exercise Discussion AR
- slides
- Pen & Paper class Implicit Surfaces
- exercise
-
- exercise solution
-
- |
-
-
-
-
- 12 |
- 10.05. 11.05. |
-
- Parametric Human Body Models and Applications
- |
-
- slides PBM
-
- |
-
- Tutorial Exercise Discussion GAN & NF
- slides
- Pen & Paper PBM
- exercise
-
- exercise solutions
-
- |
-
-
-
- 13 |
- 17.05. 18.05. |
-
- -- No classes or exercise sessions --
- |
-
- |
-
- |
-
-
-
- 13 |
- 24.05. 25.05. |
-
- Reinforcement Learning
- |
-
- slides RL pt. I
- slides RL pt. II
- |
-
- Pen & Paper RL
- exercise
- exercise solutions
- |
-
-
-
- 14 |
- 01.06 |
-
- AIT Open House
- |
- |
- |
-
-
-
- |
- 07.06 |
-
- Exam (13:30 - 16:30; HIL E 3, HIL E 4)
- |
- |
- |
-
-
-
- |
- 27.07 / 28.07 |
-
- Exam Review (14:00 - 15:00; Location ML F 39)
- |
- |
- |
-
--->
-
+