diff --git a/Docs/sphinx_doc/TimeAdvance.rst b/Docs/sphinx_doc/TimeAdvance.rst index e7264c443..d63d17632 100644 --- a/Docs/sphinx_doc/TimeAdvance.rst +++ b/Docs/sphinx_doc/TimeAdvance.rst @@ -47,7 +47,7 @@ where :math:`\mathbf{S}` is the solution vector, we solve \mathbf{S}^{*} &=& \mathbf{S}^n + \Delta t f(\mathbf{S}^n) - \mathbf{S}^{n+1} &=& \mathbf{S}^n + \frac{\Delta t}{2} f(\mathbf{S}^{n}) + f(\mathbf{S}^{*}) + \mathbf{S}^{n+1} &=& \mathbf{S}^n + \frac{\Delta t}{2} ( f(\mathbf{S}^{n}) + f(\mathbf{S}^{*}) ) .. _AcousticSubstep: diff --git a/Docs/sphinx_doc/theory/DryEquations.rst b/Docs/sphinx_doc/theory/DryEquations.rst index 60151e1c3..9ae2c9a5e 100644 --- a/Docs/sphinx_doc/theory/DryEquations.rst +++ b/Docs/sphinx_doc/theory/DryEquations.rst @@ -110,8 +110,8 @@ The anelastic constraint has the form \nabla \cdot (\overline{\rho} \mathbf{u}) = 0 We take a predictor-corrector approach to solving this system, in which we first advance -the velocity field to create a provisional velocity, :math:`\mathbf{u}^*: at the new time, -then impose the constraint by solving the pressure Poisson equation for :math:`p^\prime`: +the velocity field to create a provisional velocity, :math:`\mathbf{u}^*` at the new time, +then impose the constraint by solving the pressure Poisson equation for :math:`p^\prime` .. math:: \nabla \cdot (\frac{\overline{\rho}}{\rho} \nabla p^\prime = \nabla \cdot \mathbf{u}^*