-
Notifications
You must be signed in to change notification settings - Fork 115
/
textcat_manual.py
65 lines (57 loc) · 2.5 KB
/
textcat_manual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from typing import List, Optional
import prodigy
from prodigy.components.loaders import JSONL
from prodigy.util import split_string
# Helper functions for adding user provided labels to annotation tasks.
def add_label_options_to_stream(stream, labels):
options = [{"id": label, "text": label} for label in labels]
for task in stream:
task["options"] = options
yield task
def add_labels_to_stream(stream, labels):
for task in stream:
task["label"] = labels[0]
yield task
# Recipe decorator with argument annotations: (description, argument type,
# shortcut, type / converter function called on value before it's passed to
# the function). Descriptions are also shown when typing --help.
@prodigy.recipe(
"textcat.manual",
dataset=("The dataset to use", "positional", None, str),
source=("The source data as a JSONL file", "positional", None, str),
label=("One or more comma-separated labels", "option", "l", split_string),
exclusive=("Treat classes as mutually exclusive", "flag", "E", bool),
exclude=("Names of datasets to exclude", "option", "e", split_string),
)
def textcat_manual(
dataset: str,
source: str,
label: Optional[List[str]] = None,
exclusive: bool = False,
exclude: Optional[List[str]] = None,
):
"""
Manually annotate categories that apply to a text. If more than one label
is specified, categories are added as multiple choice options. If the
--exclusive flag is set, categories become mutually exclusive, meaning that
only one can be selected during annotation.
"""
# Load the stream from a JSONL file and return a generator that yields a
# dictionary for each example in the data.
stream = JSONL(source)
#Add labels to each task in stream
has_options = len(label) > 1
if has_options:
stream = add_label_options_to_stream(stream, label)
else:
stream = add_labels_to_stream(stream, label)
return {
"view_id": "choice" if has_options else "classification", # Annotation interface to use
"dataset": dataset, # Name of dataset to save annotations
"stream": stream, # Incoming stream of examples
"exclude": exclude, # List of dataset names to exclude
"config": { # Additional config settings, mostly for app UI
"choice_style": "single" if exclusive else "multiple", # Style of choice interface
"exclude_by": "input" if has_options else "task", # Hash value used to filter out already seen examples
},
}