forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
229 lines (196 loc) · 9.31 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import csv
import json
from pathlib import Path
import numpy as np
import torch
from transformers import PreTrainedTokenizerFast
import tensorrt_llm
from tensorrt_llm.quantization import QuantMode
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
from build import get_engine_name # isort:skip
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--max_output_len', type=int, required=True)
parser.add_argument('--log_level', type=str, default='error')
parser.add_argument('--engine_dir', type=str, default='falcon_outputs')
parser.add_argument('--tokenizer_dir',
type=str,
default="tiiuae/falcon-rw-1b",
help="Tokenizer path or name.")
parser.add_argument('--input_text',
type=str,
default='Born in north-east France, Soyer trained as a')
parser.add_argument(
'--input_tokens',
dest='input_file',
type=str,
help=
'CSV or Numpy file containing tokenized input. Alternative to text input.',
default=None)
parser.add_argument('--output_csv',
type=str,
help='CSV file where the tokenized output is stored.',
default=None)
parser.add_argument('--output_npy',
type=str,
help='Numpy file where the tokenized output is stored.',
default=None)
parser.add_argument('--num_beams',
type=int,
help="Use beam search if num_beams >1",
default=1)
parser.add_argument('--debug', action='store_true')
return parser.parse_args()
def read_config(config_path: Path):
with config_path.open('r') as f:
config = json.load(f)
builder_config = config['builder_config']
dtype = builder_config['precision']
tp_size = builder_config['tensor_parallel']
pp_size = builder_config['pipeline_parallel']
world_size = tp_size * pp_size
assert world_size == tensorrt_llm.mpi_world_size(), \
f'Engine world size ({world_size}) != Runtime world size '\
f'({tensorrt_llm.mpi_world_size()})'
num_heads = builder_config['num_heads'] // tp_size
num_kv_heads = builder_config.get('num_kv_heads', num_heads)
num_kv_heads = (num_kv_heads + tp_size - 1) // tp_size
hidden_size = builder_config['hidden_size'] // tp_size
vocab_size = builder_config['vocab_size']
num_layers = builder_config['num_layers']
quant_mode = QuantMode(builder_config['quant_mode'])
plugin_config = config['plugin_config']
use_gpt_attention_plugin = plugin_config['gpt_attention_plugin']
paged_kv_cache = plugin_config['paged_kv_cache']
tokens_per_block = plugin_config['tokens_per_block']
remove_input_padding = plugin_config['remove_input_padding']
use_custom_all_reduce = plugin_config.get('use_custom_all_reduce', False)
model_config = ModelConfig(num_heads=num_heads,
num_kv_heads=num_kv_heads,
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
gpt_attention_plugin=use_gpt_attention_plugin,
paged_kv_cache=paged_kv_cache,
tokens_per_block=tokens_per_block,
remove_input_padding=remove_input_padding,
quant_mode=quant_mode,
dtype=dtype,
use_custom_all_reduce=use_custom_all_reduce)
return model_config, tp_size, pp_size, world_size, dtype
def parse_input(input_text: str, input_file: str, tokenizer, pad_id: int,
remove_input_padding: bool):
input_tokens = []
if input_file is None:
input_tokens.append(
tokenizer.encode(input_text, add_special_tokens=False))
else:
if input_file.endswith('.csv'):
with open(input_file, 'r') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
for line in csv_reader:
input_tokens.append(np.array(line, dtype='int32'))
elif input_file.endswith('.npy'):
inputs = np.load(input_file)
for row in inputs:
row = row[row != pad_id]
input_tokens.append(row)
else:
print('Input file format not supported.')
raise SystemExit
input_ids = None
input_lengths = torch.tensor([len(x) for x in input_tokens],
dtype=torch.int32,
device='cuda')
if remove_input_padding:
input_ids = np.concatenate(input_tokens)
input_ids = torch.tensor(input_ids, dtype=torch.int32,
device='cuda').unsqueeze(0)
else:
input_ids = torch.nested.to_padded_tensor(
torch.nested.nested_tensor(input_tokens, dtype=torch.int32),
pad_id).cuda()
return input_ids, input_lengths
def print_output(output_ids, input_lengths, max_output_len, tokenizer,
output_csv, output_npy):
num_beams = output_ids.size(1)
if output_csv is None and output_npy is None:
for b in range(input_lengths.size(0)):
inputs = output_ids[b][0][:input_lengths[b]].tolist()
input_text = tokenizer.decode(inputs)
print(f'Input: \"{input_text}\"')
for beam in range(num_beams):
output_begin = input_lengths[b]
output_end = input_lengths[b] + max_output_len
outputs = output_ids[b][beam][output_begin:output_end].tolist()
output_text = tokenizer.decode(outputs)
print(f'Output: \"{output_text}\"')
output_ids = output_ids.reshape((-1, output_ids.size(2)))
if output_csv is not None:
output_file = Path(output_csv)
output_file.parent.mkdir(exist_ok=True, parents=True)
outputs = output_ids.tolist()
with open(output_file, 'w') as csv_file:
writer = csv.writer(csv_file, delimiter=',')
writer.writerows(outputs)
if output_npy is not None:
output_file = Path(output_npy)
output_file.parent.mkdir(exist_ok=True, parents=True)
outputs = np.array(output_ids.cpu().contiguous(), dtype='int32')
np.save(output_file, outputs)
def main():
args = parse_arguments()
tensorrt_llm.logger.set_level(args.log_level)
engine_dir = Path(args.engine_dir)
model_config, tp_size, pp_size, world_size, dtype = read_config(
engine_dir / 'config.json')
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size,
runtime_rank,
tp_size=tp_size,
pp_size=pp_size)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
engine_name = get_engine_name('falcon', dtype, tp_size, pp_size,
runtime_rank)
serialize_path = engine_dir / engine_name
tokenizer = PreTrainedTokenizerFast.from_pretrained(args.tokenizer_dir)
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
input_ids, input_lengths = parse_input(args.input_text, args.input_file,
tokenizer, tokenizer.eos_token_id,
model_config.remove_input_padding)
sampling_config = SamplingConfig(end_id=tokenizer.eos_token_id,
pad_id=tokenizer.pad_token_id,
num_beams=args.num_beams)
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
decoder = tensorrt_llm.runtime.GenerationSession(model_config,
engine_buffer,
runtime_mapping,
debug_mode=args.debug)
decoder.setup(input_ids.size(0),
max_context_length=input_ids.size(1),
max_new_tokens=args.max_output_len,
beam_width=args.num_beams)
output_ids = decoder.decode(input_ids, input_lengths, sampling_config)
torch.cuda.synchronize()
if runtime_rank == 0:
print_output(output_ids, input_lengths, args.max_output_len, tokenizer,
args.output_csv, args.output_npy)
if __name__ == '__main__':
main()