Skip to content

Commit

Permalink
CustomAggregator (awslabs#572)
Browse files Browse the repository at this point in the history
* Add support for EntityTypes dqdl rule

* Add support for Conditional Aggregation Analyzer

---------

Co-authored-by: Joshua Zexter <[email protected]>
  • Loading branch information
2 people authored and eycho-am committed Oct 9, 2024
1 parent 2e0efde commit 6270006
Show file tree
Hide file tree
Showing 3 changed files with 330 additions and 0 deletions.
69 changes: 69 additions & 0 deletions src/main/scala/com/amazon/deequ/analyzers/CustomAggregator.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
/**
* Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License"). You may not
* use this file except in compliance with the License. A copy of the License
* is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*
*/
package com.amazon.deequ.analyzers

import com.amazon.deequ.metrics.AttributeDoubleMetric
import com.amazon.deequ.metrics.Entity
import org.apache.spark.sql.DataFrame

import scala.util.Failure
import scala.util.Success
import scala.util.Try

// Define a custom state to hold aggregation results
case class AggregatedMetricState(counts: Map[String, Int], total: Int)
extends DoubleValuedState[AggregatedMetricState] {

override def sum(other: AggregatedMetricState): AggregatedMetricState = {
val combinedCounts = counts ++ other
.counts
.map { case (k, v) => k -> (v + counts.getOrElse(k, 0)) }
AggregatedMetricState(combinedCounts, total + other.total)
}

override def metricValue(): Double = counts.values.sum.toDouble / total
}

// Define the analyzer
case class CustomAggregator(aggregatorFunc: DataFrame => AggregatedMetricState,
metricName: String,
instance: String = "Dataset")
extends Analyzer[AggregatedMetricState, AttributeDoubleMetric] {

override def computeStateFrom(data: DataFrame, filterCondition: Option[String] = None)
: Option[AggregatedMetricState] = {
Try(aggregatorFunc(data)) match {
case Success(state) => Some(state)
case Failure(_) => None
}
}

override def computeMetricFrom(state: Option[AggregatedMetricState]): AttributeDoubleMetric = {
state match {
case Some(detState) =>
val metrics = detState.counts.map { case (key, count) =>
key -> (count.toDouble / detState.total)
}
AttributeDoubleMetric(Entity.Column, metricName, instance, Success(metrics))
case None =>
AttributeDoubleMetric(Entity.Column, metricName, instance,
Failure(new RuntimeException("Metric computation failed")))
}
}

override private[deequ] def toFailureMetric(failure: Exception): AttributeDoubleMetric = {
AttributeDoubleMetric(Entity.Column, metricName, instance, Failure(failure))
}
}
17 changes: 17 additions & 0 deletions src/main/scala/com/amazon/deequ/metrics/Metric.scala
Original file line number Diff line number Diff line change
Expand Up @@ -89,3 +89,20 @@ case class KeyedDoubleMetric(
}
}
}

case class AttributeDoubleMetric(
entity: Entity.Value,
name: String,
instance: String,
value: Try[Map[String, Double]])
extends Metric[Map[String, Double]] {

override def flatten(): Seq[DoubleMetric] = {
value match {
case Success(valuesMap) => valuesMap.map { case (key, metricValue) =>
DoubleMetric(entity, s"$name.$key", instance, Success(metricValue))
}.toSeq
case Failure(ex) => Seq(DoubleMetric(entity, name, instance, Failure(ex)))
}
}
}
244 changes: 244 additions & 0 deletions src/test/scala/com/amazon/deequ/analyzers/CustomAggregatorTest.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,244 @@
/**
* Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not
* use this file except in compliance with the License. A copy of the License
* is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*
*/
package com.amazon.deequ.analyzers

import com.amazon.deequ.SparkContextSpec
import com.amazon.deequ.utils.FixtureSupport
import org.scalatest.matchers.should.Matchers
import org.scalatest.wordspec.AnyWordSpec
import com.amazon.deequ.analyzers._
import com.amazon.deequ.metrics.AttributeDoubleMetric
import com.amazon.deequ.profiles.ColumnProfilerRunner
import com.amazon.deequ.utils.FixtureSupport
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.{sum, count}
import scala.util.Failure
import scala.util.Success
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.DataFrame
import com.amazon.deequ.metrics.AttributeDoubleMetric
import com.amazon.deequ.profiles.NumericColumnProfile

class CustomAggregatorTest
extends AnyWordSpec with Matchers with SparkContextSpec with FixtureSupport {

"CustomAggregatorTest" should {

"""Example use: return correct counts
|for product sales in different categories""".stripMargin in withSparkSession
{ session =>
val data = getDfWithIdColumn(session)
val mockLambda: DataFrame => AggregatedMetricState = _ =>
AggregatedMetricState(Map("ProductA" -> 50, "ProductB" -> 45), 100)

val analyzer = CustomAggregator(mockLambda, "ProductSales", "category")

val state = analyzer.computeStateFrom(data)
val metric: AttributeDoubleMetric = analyzer.computeMetricFrom(state)

metric.value.isSuccess shouldBe true
metric.value.get should contain ("ProductA" -> 0.5)
metric.value.get should contain ("ProductB" -> 0.45)
}

"handle scenarios with no data points effectively" in withSparkSession { session =>
val data = getDfWithIdColumn(session)
val mockLambda: DataFrame => AggregatedMetricState = _ =>
AggregatedMetricState(Map.empty[String, Int], 100)

val analyzer = CustomAggregator(mockLambda, "WebsiteTraffic", "page")

val state = analyzer.computeStateFrom(data)
val metric: AttributeDoubleMetric = analyzer.computeMetricFrom(state)

metric.value.isSuccess shouldBe true
metric.value.get shouldBe empty
}

"return a failure metric when the lambda function fails" in withSparkSession { session =>
val data = getDfWithIdColumn(session)
val failingLambda: DataFrame => AggregatedMetricState =
_ => throw new RuntimeException("Test failure")

val analyzer = CustomAggregator(failingLambda, "ProductSales", "category")

val state = analyzer.computeStateFrom(data)
val metric = analyzer.computeMetricFrom(state)

metric.value.isFailure shouldBe true
metric.value match {
case Success(_) => fail("Should have failed due to lambda function failure")
case Failure(exception) => exception.getMessage shouldBe "Metric computation failed"
}
}

"return a failure metric if there are no rows in DataFrame" in withSparkSession { session =>
val emptyData = session.createDataFrame(
session.sparkContext.emptyRDD[org.apache.spark.sql.Row],
getDfWithIdColumn(session).schema)
val mockLambda: DataFrame => AggregatedMetricState = df =>
if (df.isEmpty) throw new RuntimeException("No data to analyze")
else AggregatedMetricState(Map("ProductA" -> 0, "ProductB" -> 0), 0)

val analyzer = CustomAggregator(mockLambda,
"ProductSales",
"category")

val state = analyzer.computeStateFrom(emptyData)
val metric = analyzer.computeMetricFrom(state)

metric.value.isFailure shouldBe true
metric.value match {
case Success(_) => fail("Should have failed due to no data")
case Failure(exception) => exception.getMessage should include("Metric computation failed")
}
}
}

"Combined Analysis with CustomAggregator and ColumnProfilerRunner" should {
"provide aggregated data and column profiles" in withSparkSession { session =>
import session.implicits._

// Define the dataset
val rawData = Seq(
("thingA", "13.0", "IN_TRANSIT", "true"),
("thingA", "5", "DELAYED", "false"),
("thingB", null, "DELAYED", null),
("thingC", null, "IN_TRANSIT", "false"),
("thingD", "1.0", "DELAYED", "true"),
("thingC", "7.0", "UNKNOWN", null),
("thingC", "20", "UNKNOWN", null),
("thingE", "20", "DELAYED", "false")
).toDF("productName", "totalNumber", "status", "valuable")

val statusCountLambda: DataFrame => AggregatedMetricState = df =>
AggregatedMetricState(df.groupBy("status").count().rdd
.map(r => r.getString(0) -> r.getLong(1).toInt).collect().toMap, df.count().toInt)

val statusAnalyzer = CustomAggregator(statusCountLambda, "ProductStatus")
val statusMetric = statusAnalyzer.computeMetricFrom(statusAnalyzer.computeStateFrom(rawData))

val result = ColumnProfilerRunner().onData(rawData).run()

statusMetric.value.isSuccess shouldBe true
statusMetric.value.get("IN_TRANSIT") shouldBe 0.25
statusMetric.value.get("DELAYED") shouldBe 0.5

val totalNumberProfile = result.profiles("totalNumber").asInstanceOf[NumericColumnProfile]
totalNumberProfile.completeness shouldBe 0.75
totalNumberProfile.dataType shouldBe DataTypeInstances.Fractional

result.profiles.foreach { case (colName, profile) =>
println(s"Column '$colName': completeness: ${profile.completeness}, " +
s"approximate number of distinct values: ${profile.approximateNumDistinctValues}")
}
}
}

"accurately compute percentage occurrences and total engagements for content types" in withSparkSession { session =>
val data = getContentEngagementDataFrame(session)
val contentEngagementLambda: DataFrame => AggregatedMetricState = df => {

// Calculate the total engagements for each content type
val counts = df
.groupBy("content_type")
.agg(
(sum("views") + sum("likes") + sum("shares")).cast("int").alias("totalEngagements")
)
.collect()
.map(row =>
row.getString(0) -> row.getInt(1)
)
.toMap
val totalEngagements = counts.values.sum
AggregatedMetricState(counts, totalEngagements)
}

val analyzer = CustomAggregator(contentEngagementLambda, "ContentEngagement", "AllTypes")

val state = analyzer.computeStateFrom(data)
val metric = analyzer.computeMetricFrom(state)

metric.value.isSuccess shouldBe true
// Counts: Map(Video -> 5300, Article -> 1170)
// total engagement: 6470
(metric.value.get("Video") * 100).toInt shouldBe 81
(metric.value.get("Article") * 100).toInt shouldBe 18
println(metric.value.get)
}

"accurately compute total aggregated resources for cloud services" in withSparkSession { session =>
val data = getResourceUtilizationDataFrame(session)
val resourceUtilizationLambda: DataFrame => AggregatedMetricState = df => {
val counts = df.groupBy("service_type")
.agg(
(sum("cpu_hours") + sum("memory_gbs") + sum("storage_gbs")).cast("int").alias("totalResources")
)
.collect()
.map(row =>
row.getString(0) -> row.getInt(1)
)
.toMap
val totalResources = counts.values.sum
AggregatedMetricState(counts, totalResources)
}
val analyzer = CustomAggregator(resourceUtilizationLambda, "ResourceUtilization", "CloudServices")

val state = analyzer.computeStateFrom(data)
val metric = analyzer.computeMetricFrom(state)

metric.value.isSuccess shouldBe true
println("Resource Utilization Metrics: " + metric.value.get)
// Resource Utilization Metrics: Map(Compute -> 0.5076142131979695,
// Database -> 0.27918781725888325,
// Storage -> 0.2131979695431472)
(metric.value.get("Compute") * 100).toInt shouldBe 50 // Expected percentage for Compute
(metric.value.get("Database") * 100).toInt shouldBe 27 // Expected percentage for Database
(metric.value.get("Storage") * 100).toInt shouldBe 21 // 430 CPU + 175 Memory + 140 Storage from mock data
}

def getDfWithIdColumn(session: SparkSession): DataFrame = {
import session.implicits._
Seq(
("ProductA", "North"),
("ProductA", "South"),
("ProductB", "East"),
("ProductA", "West")
).toDF("product", "region")
}

def getContentEngagementDataFrame(session: SparkSession): DataFrame = {
import session.implicits._
Seq(
("Video", 1000, 150, 300),
("Article", 500, 100, 150),
("Video", 1500, 200, 450),
("Article", 300, 50, 70),
("Video", 1200, 180, 320)
).toDF("content_type", "views", "likes", "shares")
}

def getResourceUtilizationDataFrame(session: SparkSession): DataFrame = {
import session.implicits._
Seq(
("Compute", 400, 120, 150),
("Storage", 100, 30, 500),
("Database", 200, 80, 100),
("Compute", 450, 130, 250),
("Database", 230, 95, 120)
).toDF("service_type", "cpu_hours", "memory_gbs", "storage_gbs")
}
}

0 comments on commit 6270006

Please sign in to comment.