diff --git a/src/main/scala/com/amazon/deequ/analyzers/CustomAggregator.scala b/src/main/scala/com/amazon/deequ/analyzers/CustomAggregator.scala new file mode 100644 index 000000000..d82c09312 --- /dev/null +++ b/src/main/scala/com/amazon/deequ/analyzers/CustomAggregator.scala @@ -0,0 +1,69 @@ +/** + * Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"). You may not + * use this file except in compliance with the License. A copy of the License + * is located at + * + * http://aws.amazon.com/apache2.0/ + * + * or in the "license" file accompanying this file. This file is distributed on + * an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either + * express or implied. See the License for the specific language governing + * permissions and limitations under the License. + * + */ +package com.amazon.deequ.analyzers + +import com.amazon.deequ.metrics.AttributeDoubleMetric +import com.amazon.deequ.metrics.Entity +import org.apache.spark.sql.DataFrame + +import scala.util.Failure +import scala.util.Success +import scala.util.Try + +// Define a custom state to hold aggregation results +case class AggregatedMetricState(counts: Map[String, Int], total: Int) + extends DoubleValuedState[AggregatedMetricState] { + + override def sum(other: AggregatedMetricState): AggregatedMetricState = { + val combinedCounts = counts ++ other + .counts + .map { case (k, v) => k -> (v + counts.getOrElse(k, 0)) } + AggregatedMetricState(combinedCounts, total + other.total) + } + + override def metricValue(): Double = counts.values.sum.toDouble / total +} + +// Define the analyzer +case class CustomAggregator(aggregatorFunc: DataFrame => AggregatedMetricState, + metricName: String, + instance: String = "Dataset") + extends Analyzer[AggregatedMetricState, AttributeDoubleMetric] { + + override def computeStateFrom(data: DataFrame, filterCondition: Option[String] = None) + : Option[AggregatedMetricState] = { + Try(aggregatorFunc(data)) match { + case Success(state) => Some(state) + case Failure(_) => None + } + } + + override def computeMetricFrom(state: Option[AggregatedMetricState]): AttributeDoubleMetric = { + state match { + case Some(detState) => + val metrics = detState.counts.map { case (key, count) => + key -> (count.toDouble / detState.total) + } + AttributeDoubleMetric(Entity.Column, metricName, instance, Success(metrics)) + case None => + AttributeDoubleMetric(Entity.Column, metricName, instance, + Failure(new RuntimeException("Metric computation failed"))) + } + } + + override private[deequ] def toFailureMetric(failure: Exception): AttributeDoubleMetric = { + AttributeDoubleMetric(Entity.Column, metricName, instance, Failure(failure)) + } +} diff --git a/src/main/scala/com/amazon/deequ/metrics/Metric.scala b/src/main/scala/com/amazon/deequ/metrics/Metric.scala index 30225e246..307b278d1 100644 --- a/src/main/scala/com/amazon/deequ/metrics/Metric.scala +++ b/src/main/scala/com/amazon/deequ/metrics/Metric.scala @@ -89,3 +89,20 @@ case class KeyedDoubleMetric( } } } + +case class AttributeDoubleMetric( + entity: Entity.Value, + name: String, + instance: String, + value: Try[Map[String, Double]]) + extends Metric[Map[String, Double]] { + + override def flatten(): Seq[DoubleMetric] = { + value match { + case Success(valuesMap) => valuesMap.map { case (key, metricValue) => + DoubleMetric(entity, s"$name.$key", instance, Success(metricValue)) + }.toSeq + case Failure(ex) => Seq(DoubleMetric(entity, name, instance, Failure(ex))) + } + } +} diff --git a/src/test/scala/com/amazon/deequ/analyzers/CustomAggregatorTest.scala b/src/test/scala/com/amazon/deequ/analyzers/CustomAggregatorTest.scala new file mode 100644 index 000000000..4f21cc64e --- /dev/null +++ b/src/test/scala/com/amazon/deequ/analyzers/CustomAggregatorTest.scala @@ -0,0 +1,244 @@ +/** + * Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"). You may not + * use this file except in compliance with the License. A copy of the License + * is located at + * + * http://aws.amazon.com/apache2.0/ + * + * or in the "license" file accompanying this file. This file is distributed on + * an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either + * express or implied. See the License for the specific language governing + * permissions and limitations under the License. + * + */ +package com.amazon.deequ.analyzers + +import com.amazon.deequ.SparkContextSpec +import com.amazon.deequ.utils.FixtureSupport +import org.scalatest.matchers.should.Matchers +import org.scalatest.wordspec.AnyWordSpec +import com.amazon.deequ.analyzers._ +import com.amazon.deequ.metrics.AttributeDoubleMetric +import com.amazon.deequ.profiles.ColumnProfilerRunner +import com.amazon.deequ.utils.FixtureSupport +import org.apache.spark.sql.SparkSession +import org.apache.spark.sql.functions.{sum, count} +import scala.util.Failure +import scala.util.Success +import org.apache.spark.sql.SparkSession +import org.apache.spark.sql.DataFrame +import com.amazon.deequ.metrics.AttributeDoubleMetric +import com.amazon.deequ.profiles.NumericColumnProfile + +class CustomAggregatorTest + extends AnyWordSpec with Matchers with SparkContextSpec with FixtureSupport { + + "CustomAggregatorTest" should { + + """Example use: return correct counts + |for product sales in different categories""".stripMargin in withSparkSession + { session => + val data = getDfWithIdColumn(session) + val mockLambda: DataFrame => AggregatedMetricState = _ => + AggregatedMetricState(Map("ProductA" -> 50, "ProductB" -> 45), 100) + + val analyzer = CustomAggregator(mockLambda, "ProductSales", "category") + + val state = analyzer.computeStateFrom(data) + val metric: AttributeDoubleMetric = analyzer.computeMetricFrom(state) + + metric.value.isSuccess shouldBe true + metric.value.get should contain ("ProductA" -> 0.5) + metric.value.get should contain ("ProductB" -> 0.45) + } + + "handle scenarios with no data points effectively" in withSparkSession { session => + val data = getDfWithIdColumn(session) + val mockLambda: DataFrame => AggregatedMetricState = _ => + AggregatedMetricState(Map.empty[String, Int], 100) + + val analyzer = CustomAggregator(mockLambda, "WebsiteTraffic", "page") + + val state = analyzer.computeStateFrom(data) + val metric: AttributeDoubleMetric = analyzer.computeMetricFrom(state) + + metric.value.isSuccess shouldBe true + metric.value.get shouldBe empty + } + + "return a failure metric when the lambda function fails" in withSparkSession { session => + val data = getDfWithIdColumn(session) + val failingLambda: DataFrame => AggregatedMetricState = + _ => throw new RuntimeException("Test failure") + + val analyzer = CustomAggregator(failingLambda, "ProductSales", "category") + + val state = analyzer.computeStateFrom(data) + val metric = analyzer.computeMetricFrom(state) + + metric.value.isFailure shouldBe true + metric.value match { + case Success(_) => fail("Should have failed due to lambda function failure") + case Failure(exception) => exception.getMessage shouldBe "Metric computation failed" + } + } + + "return a failure metric if there are no rows in DataFrame" in withSparkSession { session => + val emptyData = session.createDataFrame( + session.sparkContext.emptyRDD[org.apache.spark.sql.Row], + getDfWithIdColumn(session).schema) + val mockLambda: DataFrame => AggregatedMetricState = df => + if (df.isEmpty) throw new RuntimeException("No data to analyze") + else AggregatedMetricState(Map("ProductA" -> 0, "ProductB" -> 0), 0) + + val analyzer = CustomAggregator(mockLambda, + "ProductSales", + "category") + + val state = analyzer.computeStateFrom(emptyData) + val metric = analyzer.computeMetricFrom(state) + + metric.value.isFailure shouldBe true + metric.value match { + case Success(_) => fail("Should have failed due to no data") + case Failure(exception) => exception.getMessage should include("Metric computation failed") + } + } + } + + "Combined Analysis with CustomAggregator and ColumnProfilerRunner" should { + "provide aggregated data and column profiles" in withSparkSession { session => + import session.implicits._ + + // Define the dataset + val rawData = Seq( + ("thingA", "13.0", "IN_TRANSIT", "true"), + ("thingA", "5", "DELAYED", "false"), + ("thingB", null, "DELAYED", null), + ("thingC", null, "IN_TRANSIT", "false"), + ("thingD", "1.0", "DELAYED", "true"), + ("thingC", "7.0", "UNKNOWN", null), + ("thingC", "20", "UNKNOWN", null), + ("thingE", "20", "DELAYED", "false") + ).toDF("productName", "totalNumber", "status", "valuable") + + val statusCountLambda: DataFrame => AggregatedMetricState = df => + AggregatedMetricState(df.groupBy("status").count().rdd + .map(r => r.getString(0) -> r.getLong(1).toInt).collect().toMap, df.count().toInt) + + val statusAnalyzer = CustomAggregator(statusCountLambda, "ProductStatus") + val statusMetric = statusAnalyzer.computeMetricFrom(statusAnalyzer.computeStateFrom(rawData)) + + val result = ColumnProfilerRunner().onData(rawData).run() + + statusMetric.value.isSuccess shouldBe true + statusMetric.value.get("IN_TRANSIT") shouldBe 0.25 + statusMetric.value.get("DELAYED") shouldBe 0.5 + + val totalNumberProfile = result.profiles("totalNumber").asInstanceOf[NumericColumnProfile] + totalNumberProfile.completeness shouldBe 0.75 + totalNumberProfile.dataType shouldBe DataTypeInstances.Fractional + + result.profiles.foreach { case (colName, profile) => + println(s"Column '$colName': completeness: ${profile.completeness}, " + + s"approximate number of distinct values: ${profile.approximateNumDistinctValues}") + } + } + } + + "accurately compute percentage occurrences and total engagements for content types" in withSparkSession { session => + val data = getContentEngagementDataFrame(session) + val contentEngagementLambda: DataFrame => AggregatedMetricState = df => { + + // Calculate the total engagements for each content type + val counts = df + .groupBy("content_type") + .agg( + (sum("views") + sum("likes") + sum("shares")).cast("int").alias("totalEngagements") + ) + .collect() + .map(row => + row.getString(0) -> row.getInt(1) + ) + .toMap + val totalEngagements = counts.values.sum + AggregatedMetricState(counts, totalEngagements) + } + + val analyzer = CustomAggregator(contentEngagementLambda, "ContentEngagement", "AllTypes") + + val state = analyzer.computeStateFrom(data) + val metric = analyzer.computeMetricFrom(state) + + metric.value.isSuccess shouldBe true + // Counts: Map(Video -> 5300, Article -> 1170) + // total engagement: 6470 + (metric.value.get("Video") * 100).toInt shouldBe 81 + (metric.value.get("Article") * 100).toInt shouldBe 18 + println(metric.value.get) + } + + "accurately compute total aggregated resources for cloud services" in withSparkSession { session => + val data = getResourceUtilizationDataFrame(session) + val resourceUtilizationLambda: DataFrame => AggregatedMetricState = df => { + val counts = df.groupBy("service_type") + .agg( + (sum("cpu_hours") + sum("memory_gbs") + sum("storage_gbs")).cast("int").alias("totalResources") + ) + .collect() + .map(row => + row.getString(0) -> row.getInt(1) + ) + .toMap + val totalResources = counts.values.sum + AggregatedMetricState(counts, totalResources) + } + val analyzer = CustomAggregator(resourceUtilizationLambda, "ResourceUtilization", "CloudServices") + + val state = analyzer.computeStateFrom(data) + val metric = analyzer.computeMetricFrom(state) + + metric.value.isSuccess shouldBe true + println("Resource Utilization Metrics: " + metric.value.get) +// Resource Utilization Metrics: Map(Compute -> 0.5076142131979695, + // Database -> 0.27918781725888325, + // Storage -> 0.2131979695431472) + (metric.value.get("Compute") * 100).toInt shouldBe 50 // Expected percentage for Compute + (metric.value.get("Database") * 100).toInt shouldBe 27 // Expected percentage for Database + (metric.value.get("Storage") * 100).toInt shouldBe 21 // 430 CPU + 175 Memory + 140 Storage from mock data + } + + def getDfWithIdColumn(session: SparkSession): DataFrame = { + import session.implicits._ + Seq( + ("ProductA", "North"), + ("ProductA", "South"), + ("ProductB", "East"), + ("ProductA", "West") + ).toDF("product", "region") + } + + def getContentEngagementDataFrame(session: SparkSession): DataFrame = { + import session.implicits._ + Seq( + ("Video", 1000, 150, 300), + ("Article", 500, 100, 150), + ("Video", 1500, 200, 450), + ("Article", 300, 50, 70), + ("Video", 1200, 180, 320) + ).toDF("content_type", "views", "likes", "shares") + } + + def getResourceUtilizationDataFrame(session: SparkSession): DataFrame = { + import session.implicits._ + Seq( + ("Compute", 400, 120, 150), + ("Storage", 100, 30, 500), + ("Database", 200, 80, 100), + ("Compute", 450, 130, 250), + ("Database", 230, 95, 120) + ).toDF("service_type", "cpu_hours", "memory_gbs", "storage_gbs") + } +}