-
Notifications
You must be signed in to change notification settings - Fork 2
/
2014_nips_hpml.tex
executable file
·735 lines (535 loc) · 20.5 KB
/
2014_nips_hpml.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
\newif\ifcrossling\crosslingtrue
\newif\ifitmtree\itmtreetrue
\newif\iflong\longfalse
\newif\ifevaluation\evaluationfalse
\newif\ifconjugacy\conjugacyfalse
\newif\ifnonpar\nonparfalse
\newif\ifling\lingfalse
\newif\ifhighlevel\highleveltrue
\newif\iftmreview\tmreviewfalse
\newif\ifevocation\evocationfalse
\newif\ifsupershortmlslda\supershortmlsldatrue
\documentclass[compress]{beamer}
%\usepackage{beamerthemesplit}
\usepackage{xmpmulti}
\pgfdeclareimage[width=\paperwidth]{mybackground}{../../common/boulder.pdf}
\definecolor{green}{rgb}{0,.3,0}
\usepackage{graphicx,float,wrapfig, bbm}
\usepackage{amsfonts, bbold, comment}
\usepackage{mdwlist}
\usepackage{listings}
\usepackage{environ}
\usepackage{subfigure}
\usepackage{rotating}
\usepackage{algorithmic}
\usepackage{algorithm}
\usepackage{overpic}
\usepackage{multirow}
\usetheme{Rochester}
%\useoutertheme{infolines}
%\usetheme{Boadilla}
%\usetheme{Singapore}
\usecolortheme{umd}
\title{Interactive Topic Models}
\author{Jordan Boyd-Graber}
\usetheme[bullet=circle, % Use circles instead of squares for bullets.
titleline=true, % Show a line below the frame title.
showdate=true, % show the date on the title page
alternativetitlepage=true, % Use the fancy title page.
titlepagelogo=general_figures/culogo, % Logo for the first page.
% Logo for the header on first page.
headerlogo=general_figures/boulder_cs,
]{UCBoulder}
\usecolortheme{ucdblack}
\date{Fall 2014}
\newcommand{\explain}[2]{\underbrace{#2}_{\mbox{\footnotesize{#1}}}}
\newcommand{\dir}[1]{\mbox{Dir}(#1)}
\newcommand{\mult}[1]{\mbox{Mult}( #1)}
\newcommand{\Beta}[1]{\mbox{Beta}( #1)}
\newcommand{\G}[1]{\Gamma \left( \textstyle #1 \right)}
\newcommand{\LG}[1]{\log \Gamma \left( \textstyle #1 \right)}
\newcommand{\WN}[0]{\textsc{WordNet}}
\newcommand{\itmspace}[0]{\hspace{2cm}}
\newcommand{\abr}[1]{\textsc{#1}}
\newcommand{\lda}[0]{\abr{lda}}
\newcommand{\slda}[0]{\abr{slda}}
\newcommand{\digam}[1]{\Psi \left( \textstyle #1 \right) }
\newcommand{\ddigam}[1]{\Psi' \left( \textstyle #1 \right) }
\newcommand{\e}[2]{\mathbb{E}_{#1}\left[ #2 \right] }
\newcommand{\ind}[1]{\mathbb{I}\left[ #1 \right] }
\newcommand{\ex}[1]{\mbox{exp}\left\{ #1\right\} }
\newcommand{\D}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\elbo}{\mathcal{L}}
\newcommand{\citename}[1]{\emph{#1} }
\newcommand{\bm}[1]{\mbox{\boldmath$#1$}}
\newcommand{\Dir}{\mathrm{Dir}}
\newcommand{\Mult}{\mathrm{Mult}}
\newcommand{\g}[1]{\Gamma \left( #1 \right)}
\newcommand{\paragraph}[1]{ \vskip 1cm {\bf \large #1}}
\NewEnviron{smalign}{
\vspace{-.6cm}
\begin{small}
\begin{align}
\BODY
\end{align}
\end{small}
\vspace{-.6cm}
}
\providecommand{\graphscale}{0.6}
\newcommand{\danquote}[1]{
\begin{flushright}
\begin{overpic}[width=5.5cm,tics=10]{general_figures/speech_bubble}
\put(10,30) { \parbox{4cm}{#1 }}
\end{overpic}
\includegraphics[width=1.5cm]{general_figures/milkman_dan}
\end{flushright}
}
% \AtBeginSection[] % "Beamer, do the following at the start of every section"
% { \begin{frame}
% \frametitle{Outline} % make a frame titled "Outline"
% \tableofcontents[currentsection] % show TOC and highlight current section
% \end{frame} }
\lstset{language=Python}
\DeclareMathSymbol{\R}{\mathbin}{AMSb}{"52}
%\setbeamertemplate{footline}{\hspace*{.5cm}\scriptsize{\insertauthor
\begin{document}
% this prints title, author etc. info from above
\frame{\titlepage}
\begin{frame}{Roadmap}
\begin{itemize}
\item Topic models
\item Need for interactivity
\item Models and learning for interactivity
\item Tweaking and exploring data
\end{itemize}
\end{frame}
\begin{frame}
\begin{center}
\frametitle{Topic Models as a Black Box}
From an \textbf<1>{input corpus} and number of topics \textbf<1>{$K$} $\rightarrow$ \textbf<2>{words to topics} \\
\only<1>{\includegraphics[width=0.6\linewidth]{reading_tea_leaves/figures/heldout_0} }
\only<2>{\includegraphics[width=0.9\linewidth]{reading_tea_leaves/figures/nyt_topics_wide}}
\only<3>{\includegraphics[width=0.9\linewidth]{topic_models/nyt_documents}}
\end{center}
\end{frame}
\begin{frame}{Not all topics are great}
\begin{center}
\only<1>{\includegraphics[width=.8\linewidth]{reading_tea_leaves/figures/topic_precision}}
\only<2>{\includegraphics[width=.8\linewidth]{reading_tea_leaves/figures/shuttered_model_precision}}
\begin{block}{Reading Tea Leaves}
Chang, Boyd-Graber, Wang, Gerrish, Blei. NIPS 2009.
\end{block}
\end{center}
\end{frame}
\frame{
\begin{center}
\only<1>{Model Precision on New York Times}
\end{center}
\begin{columns}
\column{.84\linewidth}
\begin{flushright}
\only<1>{\includegraphics[scale=\graphscale]{reading_tea_leaves/tasks/mp}}
\only<1>{\includegraphics[scale=\graphscale]{reading_tea_leaves/tasks/mp_y}\includegraphics[scale=\graphscale]{reading_tea_leaves/tasks/nyt_mp}\\}
\only<1>{\includegraphics[scale=\graphscale]{reading_tea_leaves/tasks/nyt_x}}
\end{flushright}
\column{.15\linewidth}
\includegraphics[scale=\graphscale]{reading_tea_leaves/tasks/legend}
\end{columns}
\vspace{-0.75cm}
\begin{center}
\includegraphics[scale=\graphscale]{reading_tea_leaves/tasks/held-out} \\
\only<1> {within a model, higher likelihood $\not =$ higher interpretability}
\end{center}
}
\frame{
\begin{columns}
\column{.5\linewidth}
\includegraphics[width=.8\linewidth]{general_figures/yuening}
\column{.5\linewidth}
\begin{block}{Interactive Topic Modeling}
Yuening Hu, Jordan Boyd-Graber, and Brianna Satinoff. Association for Computational Linguistics, 2011.
\end{block}
\end{columns}
}
\frame{
\frametitle{The Problem: User Perspective}
\begin{columns}
\column{.4\linewidth}
\begin{center}
\begin{tabular}{ccc}
& \only<2->{\itmspace}\color<2->{red}{bladder} & \\
& \only<3->{\hspace{-2cm}} \color<3->{blue}{spinal\_cord} & \\
& \only<3->{\hspace{-2cm}} \color<3->{blue}{sci} & \\
& \only<3->{\hspace{-2cm}}\color<3->{blue}{spinal\_cord\_injury} & \\
& \only<3->{\hspace{-2cm}}\color<3->{blue}{spinal} & \\
& \only<2->{\itmspace}\color<2->{red}{urinary} & \\
& \only<2->{\itmspace}\color<2->{red}{urothelial} & \\
& \only<3->{\hspace{-2cm}}\color<3->{blue}{cervical} & \\
& injury & \\
& recovery & \\
& \only<2->{\itmspace}\color<2->{red}{urinary\_tract} & \\
& locomotor & \\
& \only<3->{\hspace{-2cm}}\color<3->{blue}{lumbar} & \\
\end{tabular}
\end{center}
\column{.6\linewidth}
\danquote{These words don't belong together!}
\end{columns}
}
\begin{frame}
\frametitle{This is serious business!}
\begin{itemize}
\item Decision makers see problems
\item No easy way to correct the problem
\item Result: entire approach is abandoned
\pause
\item Two ingredients in the fix:
\begin{itemize}
\item New models
\item How to learn from mistakes
\end{itemize}
\end{itemize}
\end{frame}
\frame{
\frametitle{Fix Ingredient \#1: The model}
\begin{columns}
\column{.4\linewidth}
\begin{itemize}
\item The topics in a topic model are \only<2->{\alert<2>{uncorrelated}} distributions over words
\only<3->{
\item The advice you get can be encoded as correlations
\begin{itemize}
\alert<4>{\item Positive correlations}
\alert<5>{\item Negative correlations}
\end{itemize}
}
\end{itemize}
\column{.6\linewidth}
\only<1-2>{ \includegraphics[width=\linewidth]{interactive_topic_models/constraints_1} }
\only<3-4>{ \includegraphics[width=\linewidth]{interactive_topic_models/constraints_2} }
\only<5->{ \includegraphics[width=\linewidth]{interactive_topic_models/constraints_3} }
\end{columns}
}
\frame{
\frametitle{Tree-based Generative Process}
\begin{itemize}
\item In LDA, a topic is a multinomial distribution over words
\item Here, \emph{each topic} is a tree
\begin{itemize}
\item Each word is a leaf
\item Start at root node
\item Proceed down tree node by node until you reach a leaf
\end{itemize}
\end{itemize}
}
\frame{
\frametitle{Example of Priors}
\begin{center}
\only<1>{ \includegraphics[width=.8\linewidth]{interactive_topic_models/tree_constraints_0} }
\only<2>{ \includegraphics[width=.8\linewidth]{interactive_topic_models/tree_constraints_1} }
\only<3>{ \includegraphics[width=.8\linewidth]{interactive_topic_models/tree_constraints_2} }
\end{center}
\begin{columns}
\column{.5\linewidth}
\only<2>{
\begin{itemize}
\item For negative correlations $\tau << \beta$
\item Encourages very, very sparse distributions
\end{itemize}
\includegraphics[width=.7\linewidth]{interactive_topic_models/uniform_dirichlet}
}
\only<3>{
\begin{itemize}
\item For positive correlations $\eta >> \beta$
\item Encourages uniform distributions
\end{itemize}
\includegraphics[width=.7\linewidth]{interactive_topic_models/sparse_dirichlet}
}
\column{.5\linewidth}
\end{columns}
}
\begin{frame}
\frametitle{Adding meaning to topic models}
\begin{itemize}
\item Add an additional step to model topics as a distribution over concepts
\item We've used this formalism to build probabilistic word-sense
disambiguation algorithms~\cite{boyd-graber-07} and multilingual models~\cite{boyd-graber-10}
\item Others have used it to encode database constraints (e.g. cannot link and must link)~\cite{andrzejewski-09} or first order logic~\cite{andrzejewski-11}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Adding meaning to topic models}
\begin{block}{Traditional Topic Models}
$ p(w) = \prod_d \prod_n^{N_d} \left( p(w_{d,n} | \phi_{z_{d,n}})
\explain{\alert<3>{topic}}{p(z_{d,n} | \theta_d)} \right) p(\theta_d | \alpha) \explain{\alert<2>{topic to words}}{ \prod_k^K
p(\phi_k | \eta) }$
\end{block}
\begin{block}{Our Model}
\vspace{-0.8cm}
\begin{align*}
p(w) = \prod_d \prod_n^{N_d} & \left( p(w_{d,n} | \pi_{l_{d,n}})
\explain{\alert<6>{meaning and topic}} {p(l_{d,n} | \phi_{d,n} )
p(z_{d,n} | \theta_d)} \right) p(\theta_d | \alpha) \\
& \explain{\alert<4>{topic to concept}}{\prod_k^K
p(\phi_k | \eta)} \explain{\alert<5>{concept to word}}{\prod_c^C \left(
p(\pi_{k,c} | \tau) \right) }
\end{align*}
\end{block}
\end{frame}
\begin{frame}
% TODO(jbg): add image
\frametitle{Fix Ingredient \#2: Online Learning}
\begin{itemize}
\item Feedback shows data where you made mistakes
\item ``Forget'' those data~\cite{yao-09}
\item Then rerun inference, pretending you're seeing them for the first time
\item Allows you to escape from local optima
\end{itemize}
\end{frame}
\frame{
\frametitle{How to incorporate feedback?}
\begin{columns}
\column{.5\linewidth}
\begin{columns}
\column{.6\linewidth}
\includegraphics[width=\linewidth]{topic_models/nyt_topics}
\column{.4\linewidth}
\begin{center}
\only<2->{\includegraphics[width=.6\linewidth]{general_figures/arrow_right_down} \\}
\only<2->{\includegraphics[width=.6\linewidth]{general_figures/milkman_dan} \\}
\invisible<-2>{\includegraphics[width=.6\linewidth,angle=270]{general_figures/arrow_right_down}}
\end{center}
\end{columns}
\column{.5\linewidth}
\begin{enumerate}
\item Fit initial topic model
\pause
\item Get feedback from user
\pause
\item Incrementally relearn model
\begin{itemize}
\item Forget your mistakes
\item Replace the model with a correlated one
\item Continue inference
\end{itemize}
\end{enumerate}
\pause
Keep computation \alert<4>{fast and consistent} \cite{Hu-12a}
\end{columns}
}
\frame{
\frametitle{Inference}
\begin{center}
\only<1> {\includegraphics[width=.8\linewidth]{topic_models/inference_3}}
\only<2> {\includegraphics[width=.8\linewidth]{topic_models/inference_4}}
\only<3> {\includegraphics[width=.8\linewidth]{topic_models/inference_5}}
\only<4> {\includegraphics[width=.8\linewidth]{topic_models/inference_3}}
\only<5> {\includegraphics[width=.8\linewidth]{topic_models/inference_6}}
\only<6> {\includegraphics[width=.8\linewidth]{topic_models/inference_7}}
\only<7> {\includegraphics[width=.8\linewidth]{topic_models/inference_3}}
\end{center}
}
\frame{
\frametitle{Forgetting is everything}
\begin{itemize}
\item Just start over?
\begin{itemize}
\item More expensive computation
\item Might create more problems
\item Bad user experience
\end{itemize}
\item View problem as online inference~\cite{yao-09}
\item Suggestions reflect errors
\item ``Forget'' problems
\item Pretend you're seeing it for the first time
\end{itemize}
}
\frame{
\frametitle{Inference}
\begin{columns}
\column{.5\linewidth}
\begin{flushright}
\only<1>{ \includegraphics[height=7cm]{interactive_topic_models/mcmc_state_0} }
\only<2>{ \includegraphics[height=7cm]{interactive_topic_models/mcmc_state_1} }
\only<3>{ \includegraphics[height=7cm]{interactive_topic_models/mcmc_state_2} }
\only<4>{ \includegraphics[height=7cm]{interactive_topic_models/mcmc_state_3} } \only<5>{ \includegraphics[height=7cm]{interactive_topic_models/mcmc_state_4} }
\only<6>{ \includegraphics[height=7cm]{interactive_topic_models/mcmc_state_5} }
\only<7>{ \includegraphics[height=7cm]{interactive_topic_models/mcmc_state_6} }
\only<8>{ \includegraphics[height=7cm]{interactive_topic_models/mcmc_state_7} }
\only<9>{ \includegraphics[height=7cm]{interactive_topic_models/mcmc_state_8} }
\only<10>{ \includegraphics[height=7cm]{interactive_topic_models/mcmc_state_9} } \only<11->{ \includegraphics[height=7cm]{interactive_topic_models/mcmc_state_a} }
\end{flushright}
\column{.5\linewidth}
\only<1> { This toy example has all the problems from before! }
\only<2-6> {
\includegraphics[width=\linewidth]{interactive_topic_models/constraints_4}
\begin{block}{Negative Correlation}
\begin{itemize}
\item \emph{bladder} and \emph{spine} can't be together
\item Idea 1: Forget {\bf terms}
\end{itemize}
\end{block}
}
\only<7-11> {
\includegraphics[width=\linewidth]{interactive_topic_models/constraints_5}
\begin{block}{Positive Correlation}
\begin{itemize}
\item \emph{shuttle} and \emph{nasa} should be together
\item Idea 2: Forget {\bf documents} with terms
\end{itemize}
\end{block}
}
\end{columns}
}
\input{interactive_topic_models/nyt_soviet_russia}
\input{interactive_topic_models/nih_topics}
\frame{
\frametitle{Interactive Topic Models in the Wild \dots}
\begin{center}
\only<1>{ \includegraphics[width=\linewidth]{interactive_topic_models/new_interface} }
\only<2>{ \includegraphics[width=\linewidth]{interactive_topic_models/new_interface_edit} }
\end{center}
}
\frame{
\frametitle{What people did \dots}
\begin{itemize}
\item Inscrutable
\begin{itemize}
\item better, people, right, take, things
\item fbi, let, says
\end{itemize}
\item Collocations
\begin{itemize}
\item jesus, christ
\item solar, sun
\item even, number
\item book, list
\end{itemize}
\item Common instances (e.g. first names)
\item Not all were successful: mac, windows
\end{itemize}
}
\begin{frame}{Information Exploration User Study}
\begin{itemize}
\item Asked users to explore legislation
\item Then asked them questions
\item Could use ITM + full text search or static TM + full text search
\item ITM users were more confident and used topic models more
\end{itemize}
\end{frame}
% Add new slide about MLJ study
\begin{frame}{Conclusion}
\begin{itemize}
\item Topic models are imperfect, but were a take it or leave it proposition
\item Interactive topic models: let you fix mistakes
\item Still much to be done:
\begin{itemize}
\item Better interfaces
\item More feedback: supervision, label inductions
\item How to present models to encourage interactivity
\end{itemize}
\end{itemize}
\end{frame}
\frame{
\frametitle{Thanks}
\begin{block}{Collaborators}
Yuening Hu (UMD), Ke Zhai (UMD), Viet-An Nguyen (UMD), Dave Blei
(Princeton), Jonathan Chang (Facebook), Philip Resnik (UMD), Christiane Fellbaum (Princeton), Jerry
Zhu (Wisconsin), Sean Gerrish (Sift), Chong Wang (CMU), Dan Osherson
(Princeton), Sinead Williamson (CMU)
\end{block}
\begin{block}{Funders}
\end{block}
\begin{center}
\includegraphics[width=0.2\linewidth]{general_figures/nsf}
\hspace{0.5cm}
\includegraphics[width=0.2\linewidth]{general_figures/arl}
\hspace{0.5cm}
\includegraphics[width=0.2\linewidth]{general_figures/iarpa}
\hspace{0.5cm}
\includegraphics[width=0.2\linewidth]{general_figures/lockheed-martin}
\end{center}
}
\begin{frame}{References}
\bibliographystyle{style/acl}
\tiny
\bibliography{bib/journal-full,bib/jbg}
\end{frame}
\begin{frame}{Latent Dirichlet Allocation: A Generative Model}
\begin{itemize}
\item Focus in this talk: statistical methods
\begin{itemize}
\item Model: story of how your data came to be
\item Latent variables: missing pieces of your story
\item Statistical inference: filling in those missing pieces
\end{itemize}
\item We use latent Dirichlet allocation (LDA)~\cite{blei-03}, a fully Bayesian
version of pLSI~\cite{hofmann-99}, probabilistic version of
LSA~\cite{landauer-97}
\end{itemize}
\end{frame}
\frame
{
\frametitle{Latent Dirichlet Allocation: A Generative Model}
\begin{center}
\only<1>{ \includegraphics[scale=0.4]{topic_models/lda1.pdf} }
\only<2>{ \includegraphics[scale=0.4]{topic_models/lda2.pdf} }
\only<3>{ \includegraphics[scale=0.4]{topic_models/lda3.pdf} }
\only<4->{ \includegraphics[scale=0.4]{topic_models/lda4.pdf} }
\end{center}
\begin{itemize}
\item<1-> For each topic $k \in \{1, \dots, K\}$, draw a multinomial distribution $\beta_k$ from a Dirichlet distribution with parameter $\lambda$
\item<2-> For each document $d \in \{1, \dots, M\}$, draw a multinomial distribution $\theta_d$ from a Dirichlet distribution with parameter $\alpha$
\item<3-> For each word position $n \in \{1, \dots, N\}$, select a hidden topic $z_n$ from the multinomial distribution parameterized by $\theta$.
\item<4-> Choose the observed word $w_n$ from the distribution $\beta_{z_n}$.
\end{itemize}
\only<5->{We use statistical inference to uncover the most likely unobserved variables given observed data.}
}
\begin{frame}
\includegraphics[width=1.0\linewidth]{mrlda/lda_graphmod_nyt}
\end{frame}
\begin{frame}{SHLDA Model}
\centering
\includegraphics[width=.5\linewidth]{shlda/shLDA}
\end{frame}
\begin{frame}
\frametitle{Infvoc Classification Accuracy}
\begin{table}[tb]
\centering
%\begin{footnotesize}
\begin{tabular}{ c | c | c | c | c}
%\hline
%\multicolumn{4}{c|}{model settings} & accuracy $\%$ \\
\hline
\multirow{10}{*}{ \begin{sideways}{\visible<1->{$S=155$}}\end{sideways}} &
\multirow{9}{*}{\begin{sideways}{\visible<1->{$\tau_0=64$
$\kappa=0.6$}}\end{sideways}} & \visible<3->{\textit{infvoc}} &
\visible<3->{$\alpha^\beta=3k$ $T=40k$ $U=10$} & \visible<3->{$52.683$} \\
\cline{3-5}
& & \visible<1->{\textit{fixvoc}} & \visible<1->{vb-dict} & \visible<1->{$45.514$} \\
& & \visible<4->{\textit{fixvoc}} & \visible<4->{vb-null} & \visible<4->{$49.390$} \\
& & \visible<4->{\textit{fixvoc}} & \visible<4->{hybrid-dict} & \visible<4->{$46.720$} \\
& & \visible<4->{\textit{fixvoc}} & \visible<4->{hybrid-null} & \visible<4->{$50.474$} \\
\cline{3-5}
& & \visible<2->{\textit{fixvoc-hash}} & \visible<2->{vb-dict} & \visible<2->{$52.525$} \\
& & \visible<4->{\textit{fixvoc-hash}} & \visible<4->{vb-full $T=30k$} & \visible<4->{$51.653$} \\
& & \visible<4->{\textit{fixvoc-hash}} & \visible<4->{hybrid-dict} & \visible<4->{$50.948$} \\
& & \visible<4->{\textit{fixvoc-hash}} & \visible<4->{hybrid-full $T=30k$} & \visible<4->{$50.948$} \\
\cline{2-5}
& \multicolumn{3}{c|}{\visible<5->{\textit{dtm-dict} $tcv=0.001$}} & \visible<5->{$62.845$} \\
\hline
\end{tabular}
%\end{footnotesize}
\caption{Classification accuracy based on $50$ topic features
extracted from \textit{20 newsgroups} data.}
% \label{tbl:20-news-class}
\end{table}
\only<2->{
\begin{center}
Topics learned with \textit{hashing} are no longer interpretable, they
can only be used as features.
\end{center}}
\end{frame}
\input{topic_models/gibbs_sampling.tex}
\input{interactive_topic_models/itm_appendix}
\end{document}