-
Notifications
You must be signed in to change notification settings - Fork 2
/
2017_foe_ml_black_box.tex
executable file
·622 lines (432 loc) · 16.1 KB
/
2017_foe_ml_black_box.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
\documentclass[compress]{beamer}
%\usepackage{beamerthemesplit}
\usepackage{xmpmulti}
\usepackage{booktabs}
\usepackage{graphicx,float,wrapfig, bbm}
\usepackage{amsfonts, bbold, comment}
\usepackage{mdwlist}
\usepackage{subfigure}
\usepackage{colortbl}
\usepackage{overpic}
\usepackage{pdfpages}
\usepackage{multirow}
\pgfdeclareimage[width=\paperwidth]{mybackground}{../../common/boulder.pdf}
\newcommand{\slda}[0]{\abr{slda}}
\newcommand{\bm}[1]{\mbox{\boldmath$#1$}}
\newcommand{\lda}[0]{\abr{lda}}
\newcommand{\explain}[2]{\underbrace{#2}_{\mbox{\footnotesize{#1}}}}
\newcommand{\itmspace}[0]{\hspace{2cm}}
\newcommand{\pos}[1]{{\texttt{#1}}}
\newcommand{\e}[2]{\mathbb{E}_{#1}\left[ #2 \right] }
\newcommand{\ind}[1]{\mathbb{I}\left[ #1 \right] }
\newcommand{\abr}[1]{\textsc{#1} }
\newcommand{\ex}[1]{\mbox{exp}\left\{ #1\right\} }
\newcommand{\g}{\, | \,}
\newcommand{\citename}[1]{#1 }
\newcommand{\fsi}[2]{
\begin{frame}[plain]
\vspace*{-1pt}
\makebox[\linewidth]{\includegraphics[width=\paperwidth]{#1}}
\begin{center}
#2
\end{center}
\end{frame}
}
\newcommand{\danquote}[1]{
\begin{flushright}
\begin{overpic}[width=5.5cm,tics=10]{general_figures/speech_bubble}
\put(10,30) { \parbox{4cm}{#1 }}
\end{overpic}
\includegraphics[width=1.5cm]{general_figures/milkman_dan}
\end{flushright}
}
\newcommand{\gfxi}[2]{
\begin{center}
\includegraphics[width=#2\linewidth]{interpretability/#1}
\end{center}
}
\newcommand{\gfxs}[2]{
\begin{center}
\includegraphics[width=#2\linewidth]{simtrans/#1}
\end{center}
}
\newcommand{\gfxq}[2]{
\begin{center}
\includegraphics[width=#2\linewidth]{qb/#1}
\end{center}
}
\newif\ifjobtalk\jobtalktrue
\newif\iflong\longtrue
\usetheme[
showdate=true, % show the date on the title page
alternativetitlepage=true, % Use the fancy title page.
titlepagelogo=general_figures/shell, % Logo for the fir\
st page.
]{UMD}
\title[]{Humans and Computers Working Together to Measure Machine Learning Interpretability}
\author{ Jordan Boyd-Graber}
\date{2017}
\institute[] % (optional, but mostly needed)
{University of Maryland}
%gets rid of bottom navigation symbols
\setbeamertemplate{navigation symbols}{}
%gets rid of footer
%will override 'frame number' instruction above
%comment out to revert to previous/default definitions
\setbeamertemplate{footline}{}
\begin{document}
\frame{
\titlepage
\tiny
}
\begin{frame}[plain]
\vspace*{-1pt}
\only<1>{\makebox[\linewidth]{\includegraphics[width=\paperwidth]{general_figures/ml_intro_1}}}
\only<2>{\makebox[\linewidth]{\includegraphics[width=\paperwidth]{general_figures/ml_intro_2}}}
\only<3>{\makebox[\linewidth]{\includegraphics[width=\paperwidth]{general_figures/ml_intro_3}}}
\only<4>{\makebox[\linewidth]{\includegraphics[width=\paperwidth]{general_figures/ml_intro_4}}}
\only<5>{\makebox[\linewidth]{\includegraphics[width=\paperwidth]{general_figures/ml_intro_5}}}
\only<6->{\makebox[\linewidth]{\includegraphics[width=\paperwidth]{general_figures/blackbox}}}
\only<7>{
\vspace{-5cm}
\begin{block}{Takeaways}
\begin{itemize}
\item ML should be interpretable
\item We should measure interpretability
\item Interpretability should reflect the world we want
\end{itemize}
\end{block}
}
\end{frame}
\begin{frame}
\frametitle{The Challenge of Big Data}
\begin{columns}
\column{.5\linewidth}
Every second \dots
\begin{itemize}
\item 600 new blog posts appear
\item 34,000 tweets are tweeted
\item 30 GB of data uploaded to Facebook
\end{itemize}
\pause
\begin{block}{Unstructured}
No XML, no semantic web, no annotation. Often just raw text.
\end{block}
\column{.5\linewidth}
\only<3->{
Common task: what's going on in this dataset.
\begin{itemize}
\item Intelligence analysts
\item Brand monitoring
\item Journalists
\item Humanists
\end{itemize}
}
\only<4>{
\centering
Common solution: unsupervised machine learning (topic models)
}
\end{columns}
\end{frame}
\begin{frame}
\begin{center}
\frametitle{What does a Topic Model do?}
From an \textbf<1>{input corpus} and number of topics \textbf<1>{$K$} $\rightarrow$ \textbf<2>{words to topics} \\
\only<1>{\includegraphics[width=0.6\linewidth]{reading_tea_leaves/figures/heldout_0} }
\only<2>{\includegraphics[width=0.9\linewidth]{reading_tea_leaves/figures/nyt_topics_wide}}
%\only<3>{\includegraphics[width=0.9\linewidth]{topic_models/nyt_documents}}
\end{center}
\end{frame}
\begin{frame}{Evaluating Topic Models}
\begin{columns}
\column{.6\linewidth}
\begin{block}{ Reading Tea Leaves: How Humans Interpret Topic Models}
Jonathan Chang, Jordan Boyd-Graber, Chong Wang, Sean Gerrish, and David
M. Blei. Reading Tea Leaves: How Humans Interpret Topic Models. Neural
Information Processing Systems, 2009.
\end{block}
\column{.3\linewidth}
\includegraphics[width=.8\linewidth]{general_figures/jonathan}
\end{columns}
\end{frame}
\frame{
\frametitle{Evaluation}
\begin{center}
%\only<1>{\includegraphics[width=0.9\linewidth]{reading_tea_leaves/figures/heldout_1} }
\only<1>{\includegraphics[width=\linewidth]{reading_tea_leaves/figures/heldout_2} }
%\only<3>{\includegraphics[width=\linewidth]{reading_tea_leaves/figures/heldout_3} }
\only<2>{\includegraphics[width=\linewidth]{reading_tea_leaves/figures/heldout_4} \\
\large Measures predictive power (likelihood)}
\end{center}
}
\begin{frame}{But we don't use topic models for prediction!}
\gfxs{autocomplete}{.8}
\end{frame}
\frame{
\frametitle{Qualitative Evaluation of the Latent Space}
\begin{center}
\only<1>{\includegraphics[width=0.9\linewidth]{reading_tea_leaves/topics_from_papers/1} \\ \cite{hofmann-99} }
\only<2>{\includegraphics[width=0.7\linewidth]{reading_tea_leaves/topics_from_papers/2} \\ \cite{blei-03} }
\only<3>{\includegraphics[width=0.7\linewidth]{reading_tea_leaves/topics_from_papers/3} \\ \cite{mimno-09} }
\only<4>{\includegraphics[width=0.7\linewidth]{reading_tea_leaves/topics_from_papers/4}
\\ \cite{maskeri-08} }
\end{center}
}
\frame{
\frametitle{Word Intrusion}
\begin{itemize}
\item Take the highest probability words from a topic
\begin{block}{Original Topic}
dog \\ cat \\ \only<2->{\alert<2->{apple} \\ } horse \\ pig \\ cow
\end{block}
\only<2->{ \item \alert<2>{Intruder: high probability word from another topic}}
\pause
\end{itemize}
}
\frame{
\frametitle{Interpretability and Likelihood}
\begin{center}
\only<1>{\includegraphics[width=.8\paperwidth]{reading_tea_leaves/figures/prec_ll_1}}
\only<2>{\includegraphics[width=.8\paperwidth]{reading_tea_leaves/figures/prec_ll_2}}
\only<3>{\includegraphics[width=.8\paperwidth]{reading_tea_leaves/figures/prec_ll_3}}
\only<4>{\includegraphics[width=.8\paperwidth]{reading_tea_leaves/figures/prec_ll_4}}
\only<4>{\\ Within a model, higher likelihood $\not =$ higher interpretability}
\end{center}
}
\begin{frame}{What about Supervised Models?}
\begin{center}
\only<1>{ \includegraphics[width=.9\paperwidth]{interpretability/lime_fe_cartoon_1}
}
\only<2>{ \includegraphics[width=.9\paperwidth]{interpretability/lime_fe_cartoon_2}
}
\only<3>{ \includegraphics[width=.9\paperwidth]{interpretability/lime_fe_cartoon_3} }
\end{center}
\end{frame}
\begin{frame}{LIME}
\gfxi{lime_local}{.7}
Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ``Why Should
I Trust You?'' Explaining the Predictions of Any Classifier. KDD
2016. \\
LIME: Local Interpretable Model-Agnostic Explanations
\end{frame}
\begin{frame}{What's an Explanation}
\only<1>{\gfxi{lime_explanation}{.9}}
\only<2>{\gfxi{lime_image_explain}{.9}}
\end{frame}
\begin{frame}{What makes good Explanation?}
\begin{itemize}
\item Interpretable: Humans can Understand
\item Faithful: Describes Model
\item Model Agnostic: Generalize to Many Models
\end{itemize}
\end{frame}
\begin{frame}{Method}
\gfxi{lime_distance_weight}{.5}
\begin{itemize}
\item Complicated model predicts ``near'' example
\item Simple model explains \bf{local} variation
\item Explains what complicated model focused on
\end{itemize}
\end{frame}
\begin{frame}{Is this a good Classifier?}
\only<1>{\gfxi{lime_wolf}{1.0}}
\only<2>{\gfxi{lime_wolf_trust}{1.0}}
\end{frame}
\begin{frame}{Improving ML Algorithms}
\only<1>{ \includegraphics[width=.9\paperwidth]{interpretability/lime_fe_cartoon_3}
}
\only<2>{ \includegraphics[width=.9\paperwidth]{interpretability/lime_fe_cartoon_4}
}
\only<3>{ \includegraphics[width=.9\paperwidth]{interpretability/lime_fe_cartoon_5} }
\only<4>{ \includegraphics[width=.9\paperwidth]{interpretability/lime_fe_cartoon_6}
}
\only<5>{\gfxi{mt_task}{1.0}}
\only<6>{\gfxi{mt_results}{1.0}}
\end{frame}
\fsi{general_figures/kill_all_humans}{}
\fsi{general_figures/enslave_humans}{}
\fsi{general_figures/tng_poker}{}
\fsi{qb/quizbowl}{}
% TODO add more questions here
\begin{frame}[t]
\frametitle{Sample Question}
The Swiss-Italian architect Pietro Antonio Solari
\only<2->{built several fortified towers in this city, which
often vied for power with its northern rival Tver. A ruler
of this city prevailed in the} \only<3->{Great Stand on the
Ugra River. A prince from this city was nicknamed for
winning a battle on the} \only<4->{Don river. Partly because
a ruler of this city married} \only<5->{Sophia Palaiologina,
the niece of the last Byzantine Emperor, this city styled
itself the} \only<6->{``Third Rome'' after the fall of
Constantinople. Another prince of this city stopped paying
tribute to the} \only<7->{Mongols in 1476, ending the
``Tatar yoke.''} \only<8->{The Grand Duchy headquartered in
this city came to an end in 1547 with the ascension of}
\only<9->{ Ivan IV, who made it his capital. For 10 points,
name this city where Ivan III renovated the
Kremlin,} \only<10->{the capital of Russia.}\\
\vspace{.5cm} \only<11->{ {\bf Moscow} (Moskva / Muscovy)}
\end{frame}
\begin{frame}[plain]
\vspace{-2cm}
\includegraphics[width=1.0\linewidth]{qb/jeopardy}
\pause
\vspace{-8cm}
\begin{block}{This is {\bf not} Jeopardy}
\begin{itemize}
\item Jeopardy: must decide to answer {\bf once}, after
complete question
\item Quiz Bowl: decide after each word
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{}
\begin{columns}
\column{.4\linewidth}
\includegraphics[width=0.7\linewidth]{general_figures/mohit}
\column{.6\linewidth}
\begin{block}{ {\bf \href{http://umiacs.umd.edu/~jbg//docs/2014_emnlp_qb_rnn.pdf}{A Neural Network for Factoid Question Answering over Paragraphs}}}
\underline{\href{http://cs.umd.edu/~miyyer/}{Mohit Iyyer}}, {\bf Jordan Boyd-Graber}, Leonardo Claudino, Richard Socher, and Hal {Daum\'{e} III}. \emph{Empirical Methods in Natural Language Processing}, 2014
\end{block}
\begin{block}{ {\bf \href{file:///Users/jbg/public_html/docs/2015_acl_dan.pdf}{Deep Unordered Composition Rivals Syntactic Methods for Text Classification}}}
\underline{\href{http://cs.umd.edu/~miyyer/}{Mohit Iyyer}}, Varun
Manjunatha, {\bf Jordan Boyd-Graber} and Hal {Daum\'{e} III}. \emph{Empirical Methods in Natural Language Processing}, 2014
\end{block}
\end{columns}
\end{frame}
\begin{frame}{Experiment 1}
\begin{columns}
\column{.25\linewidth}
\gfxq{colby_jeo}{1.0}
Colby Burnett:
\$375,000
\column{.25\linewidth}
\gfxq{ben_jeo}{1.0}
Ben Ingram:
\$427,534
\column{.25\linewidth}
\gfxq{alex_jeo}{1.0}
Alex Jacobs: \$151,802
\column{.25\linewidth}
\gfxq{kristin_jeo}{1.0}
Kristin Sausville: \$95,201
\end{columns}
\pause
\begin{center}
End result: 200-200 tie!
\end{center}
\end{frame}
\fsi{qb/hsnct1}{}
\fsi{qb/nasat}{Humans 345-145}
\fsi{qb/hsnct_2017}{Computer 260-215}
\begin{frame}[plain]
\gfxq{seattle_crowd}{.5}
\gfxq{chicago_crowd}{.5}
\end{frame}
\fsi{qb/boring_dot_products}{}
\fsi{simtrans/centaur-chess}{Centaur Chess}
\begin{frame}{Measuring Interpretability}
\only<1>{\gfxq{qb_centaur_1}{.9}}
\only<2>{\gfxq{qb_centaur_2}{.9}}
\only<3>{\gfxq{qb_centaur_3}{.9}}
\only<4>{\gfxq{qb_centaur_6}{.9}}
\end{frame}
\begin{frame}{Improvement through Reinforcement Learning}
\only<1>{\gfxq{rl_centaur_2}{.9}}
\only<2>{\gfxq{rl_centaur_3}{.9}}
\only<3>{\gfxq{rl_centaur_4}{.9}}
\only<4>{\gfxq{rl_centaur_5}{.9}}
\only<5>{\gfxq{rl_centaur_6}{.9}}
\end{frame}
\begin{frame}{}
\begin{columns}
\column{.4\linewidth}
\includegraphics[width=0.8\linewidth]{general_figures/hehe} \\
\includegraphics[width=0.8\linewidth]{general_figures/alvin}
\column{.6\linewidth}
\begin{block}{ {\bf \href{http://umiacs.umd.edu/~jbg//docs/2015_emnlp_rewrite.pdf}{Syntax-based Rewriting for Simultaneous Machine Translation}}}
He He, Alvin Grissom II, {\bf Jordan Boyd-Graber}, and Hal {Daum\'{e} III}. \emph{Empirical Methods in Natural Language Processing}, 2015
\end{block}
\begin{block}{ {\bf \href{http://umiacs.umd.edu/~jbg/docs/2016_naacl_interpretese.pdf}{Interpretese vs. Translationese: The Uniqueness of Human Strategies in Simultaneous Interpretation}}}
He He, {\bf Jordan Boyd-Graber}, and Hal {Daum\'{e} III}.
\emph{North American Association for Computational Linguistics}, 2016
\end{block}
\end{columns}
\end{frame}
\begin{frame}{Simultaneous Interpretation is Hard!}
\begin{columns}
\column{.5\linewidth}
\begin{itemize}
\item Exhausting for humans
\item Computers not trusted
\item Differential strengths
\item Same word-by-word characteristic
\end{itemize}
\column{.5\linewidth}
\gfxs{computer-interpreter}{1.0}
\end{columns}
\end{frame}
\begin{frame}
\makebox[\linewidth]{\includegraphics[width=\paperwidth]{general_figures/blackbox}}
\only<2>{
\vspace{-5cm}
\begin{block}{Takeaways}
\begin{itemize}
\item ML should be interpretable
\item We should measure interpretability
\item Interpretability should reflect the world we want
\end{itemize}
\end{block}
}
\end{frame}
\frame{
\frametitle{Thanks}
\begin{block}{Collaborators}
\textsc{naqt}, Hal Daum\'e III (UMD), Leah Findlater (UMD), Kevin Seppi
(BYU), Eric Ringger
\end{block}
\begin{columns}
\column{.75\linewidth}
\begin{block}{Funders}
\begin{center}
\includegraphics[width=0.2\linewidth]{general_figures/nsf}
\includegraphics[width=0.2\linewidth]{general_figures/darpa}
\includegraphics[width=0.2\linewidth]{general_figures/arl}
\includegraphics[width=0.2\linewidth]{general_figures/iarpa}
\end{center}
\end{block}
\column{.3\linewidth}
\begin{block}{Supporters}
\gfxq{naqt}{1.0}
\end{block}
\end{columns}
}
\frame{
\begin{columns}
\column{.5\linewidth}
\includegraphics[width=.8\linewidth]{general_figures/forough}
\column{.5\linewidth}
\begin{block}{ALTO: Active Learning with Topic Overviews for Speeding Label Induction and Document Labeling}
Forough Poursabzi-Sangdeh, Jordan Boyd-Graber, Leah Findlater, and Kevin Seppi. Association for Computational Linguistics, 2016.
\end{block}
\end{columns}
}
\fsi{interactive_topic_models/alto_interface}{}
\fsi{interactive_topic_models/alto_interface_highlight}{Direct users
to document}
\fsi{interactive_topic_models/alto/user_talk_1}{ Active learning if time is short}
\fsi{interactive_topic_models/alto/user_talk_2}{ Better than status quo}
\fsi{interactive_topic_models/alto/user_talk_3}{ Active learning can
help topic models }
\fsi{interactive_topic_models/alto/user_talk_4}{ Topic models help
users understand the collection }
\fsi{interactive_topic_models/alto/user_talk_4}{ Moral: machines and
humans together (if you let them) }
\fsi{qb/viz_first_draft}{Andrea Lin}
\begin{frame}{References}
\bibliographystyle{style/acl}
\tiny
\bibliography{bib/journal-full,bib/jbg,bib/hhe,bib/alvin,teaparty/vietan}
\end{frame}
\end{document}