-
Notifications
You must be signed in to change notification settings - Fork 2
/
2022_explainability.tex
executable file
·953 lines (720 loc) · 29.9 KB
/
2022_explainability.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
\documentclass[compress]{beamer}
%\usepackage{beamerthemesplit}
\usepackage{xmpmulti}
\usepackage{booktabs}
\usepackage{graphicx,float,wrapfig, bbm}
\usepackage{amsfonts, bbold, comment}
\usepackage{mdwlist}
\usepackage{subfigure}
\usepackage{colortbl}
\usepackage{overpic}
\usepackage{pdfpages}
\usepackage{multirow}
\pgfdeclareimage[width=\paperwidth]{mybackground}{../../common/boulder.pdf}
\newcommand{\slda}[0]{\abr{slda}}
\newcommand{\bm}[1]{\mbox{\boldmath$#1$}}
\newcommand{\lda}[0]{\abr{lda}}
\newcommand{\explain}[2]{\underbrace{#2}_{\mbox{\footnotesize{#1}}}}
\newcommand{\itmspace}[0]{\hspace{2cm}}
\newcommand{\pos}[1]{{\texttt{#1}}}
\newcommand{\e}[2]{\mathbb{E}_{#1}\left[ #2 \right] }
\newcommand{\ind}[1]{\mathbb{I}\left[ #1 \right] }
\newcommand{\abr}[1]{\textsc{#1} }
\newcommand{\ex}[1]{\mbox{exp}\left\{ #1\right\} }
\newcommand{\g}{\, | \,}
\newcommand{\citename}[1]{#1 }
\newcommand{\fsi}[2]{
\begin{frame}[plain]
\vspace*{-1pt}
\makebox[\linewidth]{\includegraphics[width=\paperwidth]{#1}}
\begin{center}
#2
\end{center}
\end{frame}
}
\newcommand{\danquote}[1]{
\begin{flushright}
\begin{overpic}[width=5.5cm,tics=10]{general_figures/speech_bubble}
\put(10,30) { \parbox{4cm}{#1 }}
\end{overpic}
\includegraphics[width=1.5cm]{general_figures/milkman_dan}
\end{flushright}
}
\newcommand{\gfxi}[2]{
\begin{center}
\includegraphics[width=#2\linewidth]{interpretability/#1}
\end{center}
}
\newcommand{\gfxs}[2]{
\begin{center}
\includegraphics[width=#2\linewidth]{simtrans/#1}
\end{center}
}
\newcommand{\gfxq}[2]{
\begin{center}
\includegraphics[width=#2\linewidth]{qb/#1}
\end{center}
}
\newif\ifjobtalk\jobtalktrue
\newif\iflong\longtrue
\usetheme[
showdate=true, % show the date on the title page
alternativetitlepage=true, % Use the fancy title page.
titlepagelogo=general_figures/shell, % Logo for the fir\
st page.
]{UMD}
\title[]{If You Want Interpretable AI, Measure It}
\author{ Jordan Boyd-Graber}
\date{2022}
\institute[] % (optional, but mostly needed)
{University of Maryland}
%gets rid of bottom navigation symbols
\setbeamertemplate{navigation symbols}{}
%gets rid of footer
%will override 'frame number' instruction above
%comment out to revert to previous/default definitions
\setbeamertemplate{footline}{}
\begin{document}
\frame{
\titlepage
\tiny
}
\begin{frame}[plain]
\vspace*{-1pt}
\only<1>{\makebox[\linewidth]{\includegraphics[width=\paperwidth]{general_figures/ml_intro_1}}}
\only<2>{\makebox[\linewidth]{\includegraphics[width=\paperwidth]{general_figures/ml_intro_2}}}
\only<3>{\makebox[\linewidth]{\includegraphics[width=\paperwidth]{general_figures/ml_intro_3}}}
\only<4>{\makebox[\linewidth]{\includegraphics[width=\paperwidth]{general_figures/ml_intro_4}}}
\only<5>{\makebox[\linewidth]{\includegraphics[width=\paperwidth]{general_figures/ml_intro_5}}}
\only<6->{\makebox[\linewidth]{\includegraphics[width=\paperwidth]{general_figures/blackbox}}}
\only<7>{
\vspace{-5cm}
\begin{block}{Outline}
\begin{itemize}
\item AI should be interpretable
\item We should measure interpretability
\item Proposal for Unsupervised Methods (Topic Models)
\item Proposal for Supervised Methods (Question Answering / Translation)
\end{itemize}
\end{block}
}
\end{frame}
\begin{frame}{Interpretability is Big!}
\includegraphics[width=0.9\paperwidth]{general_figures/doshi-velez_kim}
\begin{itemize}
\item Understanding: Debugging
\item Trust: Does the user believe the system
\item Simulation:Can the user recreate the system
\item Safety / Ethics: Does the system protect/hurt people
\item Mismatched Objectives: How do you balance with accuracy
\only<2->{\item Augmentation}
\end{itemize}
\begin{center}
\includegraphics[width=0.5\paperwidth]{general_figures/interpretability_hierarchy}
\end{center}
\end{frame}
\fsi{general_figures/chenhao_tutorial}{If you want to know more}
\begin{frame}
\frametitle{Unsupervised Methods: Dealing with the Deluge}
\begin{columns}
\column{.5\linewidth}
Every second \dots
\begin{itemize}
\item 600 new blog posts appear
\item 34,000 tweets are tweeted
\item 30 GB of data uploaded to Facebook
\end{itemize}
\pause
\begin{block}{Unstructured}
No XML, no semantic web, no annotation. Often just raw text.
\end{block}
\column{.5\linewidth}
\only<3->{
Common task: what's going on in this dataset.
\begin{itemize}
\item Intelligence analysts
\item Brand monitoring
\item Journalists
\item Humanists
\end{itemize}
}
\only<4>{
\centering
Common solution: unsupervised machine learning (topic models)
}
\end{columns}
\end{frame}
\begin{frame}
\begin{center}
\frametitle{What does a Topic Model do?}
From an \textbf<1>{input corpus} and number of topics \textbf<1>{$K$} $\rightarrow$ \textbf<2>{words to topics} \\
\only<1>{\includegraphics[width=0.6\linewidth]{reading_tea_leaves/figures/heldout_0} }
\only<2>{\includegraphics[width=0.9\linewidth]{reading_tea_leaves/figures/nyt_topics_wide}}
%\only<3>{\includegraphics[width=0.9\linewidth]{topic_models/nyt_documents}}
\end{center}
\end{frame}
\begin{frame}{Evaluating Topic Models}
\begin{columns}
\column{.6\linewidth}
\begin{block}{ Reading Tea Leaves: How Humans Interpret Topic Models}
Jonathan Chang, Jordan Boyd-Graber, Chong Wang, Sean Gerrish, and David
M. Blei. Reading Tea Leaves: How Humans Interpret Topic Models. Neural
Information Processing Systems, 2009.
\end{block}
\column{.3\linewidth}
\includegraphics[width=.8\linewidth]{general_figures/jonathan}
\end{columns}
\end{frame}
\frame{
\frametitle{Evaluation}
\begin{center}
%\only<1>{\includegraphics[width=0.9\linewidth]{reading_tea_leaves/figures/heldout_1} }
\only<1>{\includegraphics[width=\linewidth]{reading_tea_leaves/figures/heldout_2} }
%\only<3>{\includegraphics[width=\linewidth]{reading_tea_leaves/figures/heldout_3} }
\only<2>{\includegraphics[width=\linewidth]{reading_tea_leaves/figures/heldout_4} \\
\large Measures predictive power (likelihood)}
\end{center}
}
\begin{frame}{Likelihood Computation}
\begin{equation}
P(\alert<5>{\mathcal{W}} \g \alert<2>{\mathcal{W}'}) = \int{ P( \alert<5>{\mathcal{W}} \g \alert<4>{\Phi},
\alpha ) P(\phi \g \mathcal{W'}, \alert<3>{\alpha}) d\alert<4>{\Phi} }
\end{equation}
\begin{itemize}
\item \alert<2>{Training data}
\item \alert<3>{Hyperparameters}
\item \alert<4>{Latent variables (topics)}
\item \alert<5>{Held out data}
\end{itemize}
\end{frame}
\begin{frame}{But we don't use topic models for prediction!}
\gfxs{autocomplete}{.8}
\end{frame}
\frame{
\frametitle{Qualitative Evaluation of the Latent Space}
\begin{center}
\only<1>{\includegraphics[width=0.9\linewidth]{reading_tea_leaves/topics_from_papers/1} \\ \cite{hofmann-99} }
\only<2>{\includegraphics[width=0.7\linewidth]{reading_tea_leaves/topics_from_papers/2} \\ \cite{blei-03} }
\only<3>{\includegraphics[width=0.7\linewidth]{reading_tea_leaves/topics_from_papers/3} \\ \cite{mimno-09} }
\only<4>{\includegraphics[width=0.7\linewidth]{reading_tea_leaves/topics_from_papers/4}
\\ \cite{maskeri-08} }
\end{center}
}
\frame{
\frametitle{Word Intrusion}
\begin{itemize}
\item Take the highest probability words from a topic
\begin{block}{Original Topic}
dog \\ cat \\ \only<2->{\alert<2->{apple} \\ } horse \\ pig \\ cow
\end{block}
\only<2->{ \item \alert<2>{Intruder: high probability word from another topic}}
\pause
\end{itemize}
}
\frame{
\frametitle{Interpretability and Likelihood}
\begin{center}
\only<1>{\includegraphics[width=.8\paperwidth]{reading_tea_leaves/figures/prec_ll_1}}
\only<2>{\includegraphics[width=.8\paperwidth]{reading_tea_leaves/figures/prec_ll_2}}
\only<3>{\includegraphics[width=.8\paperwidth]{reading_tea_leaves/figures/prec_ll_3}}
\only<4>{\includegraphics[width=.8\paperwidth]{reading_tea_leaves/figures/prec_ll_4}}
\only<4>{\\ Within a model, higher likelihood $\not =$ higher interpretability}
\end{center}
}
\begin{frame}{Since then \dots}
\begin{itemize}
\item A way to get at an evaluation that matches {\bf what we care about}
\item A necessary step to improving topic models for navigating large datasets~\cite{talley-11}
\item \alert<2>{Others have discovered automatic methods that uncover the same properties}~\cite{newman-10,mimno-11}
\item And extended the technique to structured topics and
phrases~\cite{lindsey-12,weninger-12}
\item Iteractive refinement with tree-structured
priors~\cite{hu-14} and spectral algorithms~\cite{Lund-17}
\item Extending to multiple users~\cite{Felt-15}
\end{itemize}
\end{frame}
\begin{frame}{Machine Reading Tea Leaves}
\includegraphics[width=.8\paperwidth]{reading_tea_leaves/machine_reading_tea_leaves}
\begin{itemize}
\item Take a reference corpus, compute probability of words in that corpus
\item For a topic, take all pairs of words $w_i$, $w_j$ in the top
$n$ words
\item OC-Auto-NPMI
\begin{equation}
\sum_{j=2}^{N}\sum_{i=1}^{j-1}{{ \frac{\log \frac{P(w_j,
w_i)}{P(w_i)P(w_j)}}{-\log P(w_i, w_j)}}}
\end{equation}
\item Words that appear near each other in documents more than
their natural frequency
\end{itemize}
\end{frame}
\begin{frame}{}
\begin{columns}
\column{.4\linewidth}
\begin{center}
\includegraphics[width=0.8\linewidth]{general_figures/alexander}
\end{center}
\column{.6\linewidth}
\begin{block}{\href{http://umiacs.umd.edu/~jbg//docs/2021_neurips_incoherence.pdf}{Is Automated Topic Evaluation Broken? The Incoherence of Coherence}}
\href{https://alexanderhoyle.com/}{Alexander Miserlis Hoyle},
Pranav Goel, Andrew Hian-Cheong, Denis Peskov, Jordan
Boyd-Graber, and Philip Resnik.
\emph{Neural Information Processing Systems}, 2021
\end{block}
\end{columns}
\end{frame}
\begin{frame}{Is Automatic Coherence Good Enough?}
\begin{table}
\centering
\resizebox{\textheight}{!}{
\begin{tabular}{lllllllllll}
\toprule
Source & Human & Perplexity & Coherence & Implementation & Ref. Corpus & Consistent & Hparam & >1 run / & LDA & Baseline \\
& Evals? & & & Specified & Specified ? & Preproc? & search? & err. bars? & Implementation? & w/in 2 yr?\\
\midrule
~\cite{Bianchi2020PretrainingIA} & \alert<2>{No} & No & \abr{npmi}, Embed-sim & None & Internal, External-GoogleNews & Yes & No & Yes & Variational & No\\
~\cite{zhao2021neural} & \alert<2>{No} & No & \abr{npmi} & Palmetto & No & Unclear & No & Yes & N/A & Yes\\
~\cite{Feng2020ContextRN} & \alert<2>{No} & Yes & \abr{npmi} & None & No & Yes & No & No & N/A & Yes\\
~\cite{hoyle-etal-2020-improving} & \alert<2>{No} & No & \abr{npmi} & In paper & External \abr{nyt}, Internal & No & Yes & Yes & N/A & Yes\\
~\cite{Hu2020NeuralTM} & \alert<2>{No} & No & $C_p$, $C_a$, \abr{npmi} & Palmetto & External \abr{wiki} & No & Likely no & No & Sampling & Yes\\
~\cite{Isonuma2020TreeStructuredNT} & \alert<2>{No} & Yes & \abr{npmi} & None & No, likely external & Unclear & No & No & Sampling & No\\
~\cite{Joo2020DirichletVA} & \alert<2>{No} & Yes & \abr{npmi} & None & No, likely internal & No & Likely yes & Yes & N/A & Yes\\
~\cite{Lin2020CopulaGN} & \alert<2>{No} & Yes & \abr{npmi} & None & No, likely internal & Unclear & Yes & Yes & N/A & Yes\\
~\cite{Ning2020NonparametricTM} & \alert<2>{No} & Yes & \abr{npmi} & Lau github & No & Yes & Likely no & Yes & Variational & No\\
~\cite{Panwar2020TANNTMTA} & \alert<2>{No} & No & \abr{npmi} & Lau github & No & Yes & Likely no & No & Sampling & Yes\\
~\cite{Rezaee2020ADV} & \alert<2>{No} & No & N/A & N/A & N/A & Yes & Likely no & Yes & Variational & No\\
~\cite{Thompson2020TopicMW} & \alert<2>{No} & No & Coherence, \abr{pmi} & In paper & External \abr{nyt} & No & No & Yes & Sampling & No\\
~\cite{Tian2020LearningVM} & \alert<2>{No} & Yes & \abr{npmi} & None & No & No & Yes & No & Variational & Yes\\
~\cite{Wang2020NeuralTM} & \alert<2>{No} & No & $C_p$, $C_a$, \abr{npmi}, UCI & Palmetto & No & No & No & No & Sampling & Yes\\
~\cite{Wu2020NeuralMC} & \alert<2>{No} & Yes & \abr{npmi} & None & No & No & Yes & No & N/A & Yes\\
~\cite{Wu2020ShortTT} & \alert<2>{No} & No & $C_v$ & Palmetto & No & Yes & No & No & Unspecified & Yes\\
~\cite{Yang2020GraphAT} & \alert<2>{No} & Yes & Coherence & In paper & No, likely internal & Yes & No & No & Unspecified & No\\
~\cite{Zhou2020NeuralTM} & \alert<2>{No} & No & \abr{npmi}, $C_p$ & Palmetto & External \abr{wiki} & No & Likely no & No & Unspecified & Yes\\
~\cite{burkhardtDecouplingSparsitySmoothness2019} & \alert<2>{No} & Yes & \abr{npmi} & None & No, likely internal & Unclear & Yes & No & Variational & Yes\\
~\cite{diengTopicModelingEmbedding2019} & \alert<2>{No} & Yes & Coherence & In paper & No, likely internal & Yes & No & No & Unspecified & No\\
~\cite{Gui2019NeuralTM} & \alert<2>{No} & No & $C_v$ & None & External \abr{wiki} & Yes & Likely no & No & Unspecified & Yes\\
~\cite{Gupta2019DocumentIN} & \alert<2>{No} & Yes & $C_v$ & Gensim & No, likely internal & Unclear & Likely no & No & N/A & No\\
~\cite{Gupta2019textTOvecDC} & \alert<2>{No} & Yes & $C_v$ & Gensim & No, likely internal & Unclear & Likely no & No & Sampling & Yes\\
~\cite{Lin2019SparsemaxAR} & \alert<2>{No} & Yes & PMI & In paper & No, likely external & Unclear & No & No & Variational & Yes\\
~\cite{Liu2019NeuralVC} & \alert<2>{No} & Yes & \abr{npmi} & Lau github & No, likely internal & Yes & No & No & Variational & Yes\\
~\cite{Nan2019TopicMW} & \alert<2>{No} & No & \abr{npmi} & None & No & No & No & No & Sampling & Yes\\
~\cite{Wang2019ATMAT} & \alert<2>{No} & No & $C_p$, $C_a$, UCI, \abr{npmi}, UMASS & Palmetto & No & No & No & No & Unspecified & Yes\\
~\cite{Card2018NeuralMF} & \alert<2>{No} & Yes & \abr{npmi} & In paper & External-gigaword & Yes & Likely yes & No & Sampling & Yes\\
~\cite{Ding2018CoherenceAwareNT} & \alert<2>{No} & Yes & \abr{npmi} & Lau github & No, likely external & No & Likely no & No & Sampling & Yes\\
~\cite{He2018InteractionAwareTM} & \alert<2>{No} & No & Coherence & None & No, likely internal & Yes & No & No & N/A & Yes\\
~\cite{Peng2018NeuralST} & \alert<2>{No} & Yes & N/A & N/A & N/A & Yes & Likely no & No & Variational & Yes\\
~\cite{Silveira2018TopicMU} & \alert<2>{No} & Yes & \abr{npmi} & Lau github & Internal & Yes & No & Yes & N/A & Yes\\
~\cite{Zhang2018WHAIWH} & \alert<2>{No} & Yes & N/A & N/A & N/A & Unclear & Likely no & No & N/A & Yes\\
~\cite{Zhao2018DirichletBN} & \alert<2>{No} & Yes & \abr{npmi} & Palmetto & External \abr{wiki} & Unclear & No & Yes & N/A & Yes\\
~\cite{Zhu2018GraphBTMGE} & \alert<2>{No} & No & Coherence & None & No, likely internal & Yes & Likely no & No & Variational & Yes\\
~\cite{Jung2017ContinuousST} & \alert<2>{No} & Yes & \abr{npmi}, \abr{PMI}, UMASS & None & No & Yes & No & No & Sampling & Yes\\
~\cite{Miao2017DiscoveringDL} & \alert<2>{No} & Yes & \abr{npmi} & In paper & No & No & Likely no & No & Variational & Yes\\
~\cite{Srivastava2017AutoencodingVI} & \alert<2>{No} & Yes & \abr{npmi} & None & No & Yes & No & No & Sampling & Yes\\
~\cite{Miao2016NeuralVI} & \alert<2>{No} & Yes & N/A & N/A & N/A & Yes & Likely no & No & Unspecified & Yes\\
~\cite{Nguyen2015ImprovingTM} & \alert<2>{No} & No & \abr{npmi} & Lau github & External \abr{wiki} & Yes & No & Yes & Sampling & No\\
\bottomrule
\end{tabular}
}
\caption{Papers used in meta-analysis}
\end{table}
\end{frame}
\fsi{reading_tea_leaves/incoherence/model_comparison_boxplot}{All that
passes automatic evaluations is not Gold}
\begin{frame}{What about Supervised Models?}
\only<1>{
\begin{columns}
\column{.5\linewidth}
\begin{block}{Unsupervised Methods}
$p(z, x)$
\end{block}
\column{.5\linewidth}
\begin{block}{Supervised Methods}
$p(y \;|\; x)$
\end{block}
\end{columns}
\begin{itemize}
\item Unsupervised methods \emph{discover} structure
\item Supervised methods \emph{reproduce} correct answers
\end{itemize}
}
\only<2>{
\begin{center}
\includegraphics[width=.6\paperwidth]{qb/squad_ex}
\end{center}
}
\end{frame}
\begin{frame}[plain]
\vspace{-2cm}
\includegraphics[width=1.0\linewidth]{qb/jeopardy}
\pause
\vspace{-8cm}
\begin{block}{This is {\bf not} Jeopardy}
\begin{itemize}
\item Jeopardy: must decide to answer {\bf once}, after
complete question
\item Quiz Bowl: decide after each word
\end{itemize}
\end{block}
\end{frame}
% TODO add more questions here
\begin{frame}[t]
\frametitle{Sample Question}
The Swiss-Italian architect Pietro Antonio Solari
\only<2->{built several fortified towers in this city, which
often vied for power with its northern rival Tver. A ruler
of this city prevailed in the} \only<3->{Great Stand on the
Ugra River. A prince from this city was nicknamed for
winning a battle on the} \only<4->{Don river. Partly because
a ruler of this city married} \only<5->{Sophia Palaiologina,
the niece of the last Byzantine Emperor, this city styled
itself the} \only<6->{``Third Rome'' after the fall of
Constantinople. Another prince of this city stopped paying
tribute to the} \only<7->{Mongols in 1476, ending the
``Tatar yoke.''} \only<8->{The Grand Duchy headquartered in
this city came to an end in 1547 with the ascension of}
\only<9->{ Ivan IV, who made it his capital. For 10 points,
name this city where Ivan III renovated the
Kremlin,} \only<10->{the capital of Russia.}\\
\vspace{.5cm} \only<11->{ {\bf Moscow} (Moskva / Muscovy)}
\end{frame}
\begin{frame}{}
\begin{columns}
\column{.4\linewidth}
\includegraphics[width=0.7\linewidth]{general_figures/mohit}
\column{.6\linewidth}
\begin{block}{ {\bf \href{http://umiacs.umd.edu/~jbg//docs/2014_emnlp_qb_rnn.pdf}{A Neural Network for Factoid Question Answering over Paragraphs}}}
\underline{\href{http://cs.umd.edu/~miyyer/}{Mohit Iyyer}}, {\bf Jordan Boyd-Graber}, Leonardo Claudino, Richard Socher, and Hal {Daum\'{e} III}. \emph{Empirical Methods in Natural Language Processing}, 2014
\end{block}
\begin{block}{ {\bf \href{file:///Users/jbg/public_html/docs/2015_acl_dan.pdf}{Deep Unordered Composition Rivals Syntactic Methods for Text Classification}}}
\underline{\href{http://cs.umd.edu/~miyyer/}{Mohit Iyyer}}, Varun
Manjunatha, {\bf Jordan Boyd-Graber} and Hal {Daum\'{e} III}. \emph{Empirical Methods in Natural Language Processing}, 2014
\end{block}
\end{columns}
\end{frame}
\begin{frame}{Experiment 1}
\begin{columns}
\column{.25\linewidth}
\gfxq{colby_jeo}{1.0}
Colby Burnett:
\$375,000
\column{.25\linewidth}
\gfxq{ben_jeo}{1.0}
Ben Ingram:
\$427,534
\column{.25\linewidth}
\gfxq{alex_jeo}{1.0}
Alex Jacobs: \$151,802
\column{.25\linewidth}
\gfxq{kristin_jeo}{1.0}
Kristin Sausville: \$95,201
\end{columns}
\pause
\begin{center}
End result: 200-200 tie!
\end{center}
\end{frame}
\fsi{qb/hsnct1}{}
\fsi{qb/nasat}{Humans 345-145}
\fsi{qb/hsnct_2017}{Computer 260-215}
\begin{frame}[plain]
\gfxq{seattle_crowd}{.5}
\gfxq{chicago_crowd}{.5}
\end{frame}
\fsi{qb/boring_dot_products}{}
\fsi{simtrans/centaur-chess}{Centaur Chess}
\fsi{qb/augment/screenshot_all}{Interface}
\fsi{qb/augment/screenshot_guesses}{}
\fsi{qb/augment/screenshot_highlight}{{\bf Highlighting}}
\fsi{qb/augment/screenshot_evidence}{}
\begin{frame}{Experts vs. Novices}
\begin{block}{Experts}
Trivia experts, familiar with task, enjoy the task
\end{block}
\begin{block}{Mechanical Turkers}
Mechanical Turkers: easily overwhelmed, need the help
\end{block}
\end{frame}
\fsi{qb/augment/tools_acc}{Evidence helps novices, experts are expert}
\fsi{qb/augment/tools_buzz}{Hights help experts}
\begin{frame}{Regression Analysis}
For each triple (player, question, interpretations), we predict the outcome
(correct answer or not) with a logistic regression. The features include:
\begin{itemize}
\item player ID
\item question ID
\item buzzing position
\item enabled interpretations: individual and combinations
\end{itemize}
\pause
\begin{block}{Coefficients tell story!}
\begin{itemize}
\item {\bf Big, Positive}: Help
\item {\bf Big, Negative}: Hurt
\item {\bf Small}: Neutral
\end{itemize}
\end{block}
\end{frame}
\fsi{qb/augment/coefs_0}{Everything helps: Evidence for novies,
Highlight for experts}
\fsi{qb/augment/coefs_1}{Synergistic effects}
\fsi{qb/augment/coefs_2}{Highlight and evidence help experts most}
\fsi{qb/augment/coefs_3}{For novices, less synergy}
\begin{frame}{}
\begin{columns}
\column{.4\linewidth}
\begin{center}
\includegraphics[width=0.8\linewidth]{general_figures/shi}
\end{center}
\column{.6\linewidth}
\begin{block}{\href{http://umiacs.umd.edu/~jbg//docs/2023_emnlp_augment.pdf}{Learning to Explain Selectively}}
\underline{\href{http://users.umiacs.umd.edu/~shifeng/}{Shi Feng}} and {\bf Jordan Boyd-Graber}. \emph{Empirical Methods in Natural Language Processing}, 2022
\end{block}
\end{columns}
\end{frame}
\begin{frame}{Measuring Interpretability}
\only<1>{\gfxq{qb_centaur_1}{.9}}
\only<2>{\gfxq{qb_centaur_2}{.9}}
\only<3>{\gfxq{qb_centaur_3}{.9}}
\only<4>{\gfxq{qb_centaur_6}{.9}}
\end{frame}
\begin{frame}{Improvement through Reinforcement Learning}
\only<1>{\gfxq{rl_centaur_2}{.9}}
\only<2>{\gfxq{rl_centaur_3}{.9}}
\only<3>{\gfxq{rl_centaur_4}{.9}}
\only<4>{\gfxq{rl_centaur_5}{.9}}
\only<5>{\gfxq{rl_centaur_6}{.9}}
\end{frame}
\fsi{qb/augment/bandit_result}{Personalization after forty questions}
\begin{frame}{}
\begin{columns}
\column{.2\linewidth}
\begin{center}
\includegraphics[width=0.8\linewidth]{general_figures/hehe} \\
\includegraphics[width=0.8\linewidth]{general_figures/alvin}
\\
\includegraphics[width=0.8\linewidth]{general_figures/hyojung}
\end{center}
\column{.8\linewidth}
\begin{block}{ {\bf
\href{http://umiacs.umd.edu/~jbg//docs/2015_emnlp_rewrite.pdf}{Syntax-based
Rewriting for Simultaneous Machine Translation}}}
\small
He He, Alvin Grissom II, {\bf Jordan Boyd-Graber}, and Hal {Daum\'{e} III}. \emph{Empirical Methods in Natural Language Processing}, 2015
\end{block}
\begin{block}{ {\bf
\href{http://umiacs.umd.edu/~jbg/docs/2016_naacl_interpretese.pdf}{Interpretese
vs. Translationese: The Uniqueness of Human Strategies
in Simultaneous Interpretation}}}
\small
He He, {\bf Jordan Boyd-Graber}, and Hal {Daum\'{e} III}.
\emph{North American Association for Computational Linguistics}, 2016
\end{block}
\begin{block}{ {\bf
\href{http://umiacs.umd.edu/~jbg/docs/2022_emnlp_simint.pdf}{SimQA:
Detecting Simultaneous MT Errors through
Word-by-Word Question Answering}}}
\small
\href{https://h-j-han.github.io/}{HyoJung Han}, Marine
Carpuat, {\bf Jordan Boyd-Graber}. \emph{Empirical Methods in Natural Language Processing}, 2022
\end{block}
\end{columns}
\end{frame}
\begin{frame}{Simultaneous Interpretation is Hard!}
\begin{columns}
\column{.5\linewidth}
\begin{itemize}
\item Exhausting for humans
\item Computers not trusted
\item Differential strengths
\item Same word-by-word characteristic
\end{itemize}
\column{.5\linewidth}
\gfxs{computer-interpreter}{1.0}
\end{columns}
\end{frame}
\begin{frame}{How to Evaluate}
\begin{columns}
\column{.5\linewidth}
\only<1>{
\includegraphics[width=0.8\linewidth]{simtrans/polish_jeopardy}}
\only<2->{\includegraphics[width=0.8\linewidth]{simtrans/interface}}
\column{.5\linewidth}
\begin{itemize}
\item You're a contestant on a Polish game show
\item You have access to a simultaneous translation system
\item Your job is to answer the question before your opponent
\only<3>{\alert<3>{ \item Keep QA system constant, vary translation}}
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}{BLEU results for modern Simultaneous Translation Systems}
\begin{center}
\includegraphics[width=0.9\linewidth]{simtrans/simQA/bleu_simqa}
\end{center}
\end{frame}
\begin{frame}{Downstream QA Results}
\begin{center}
\includegraphics[width=0.9\linewidth]{simtrans/simQA/qametrics_simqa}
\end{center}
\only<2->{Additional benefit: Only need to translate the answer}
\end{frame}
\begin{frame}{Undertranslation}
\begin{center}
\includegraphics[width=0.4\paperwidth]{simtrans/simQA/ex_undertranslation}
\end{center}
When the information doesn't
help an answerer, it's not producing anything useful
\end{frame}
\begin{frame}{Undertranslation}
\begin{columns}
\column{.5\linewidth}
\includegraphics[width=0.5\paperwidth]{simtrans/simQA/ex_hallucination}
\column{.5\linewidth}
\includegraphics[width=0.5\paperwidth]{simtrans/simQA/ex_hallucination_text}
\end{columns}
When the information confuses an
answerer, it's actively hindering!
\end{frame}
\begin{frame}
\makebox[\linewidth]{\includegraphics[width=\paperwidth]{general_figures/blackbox}}
\only<2>{
\vspace{-5cm}
\begin{block}{Takeaways}
\begin{itemize}
\item AI should be interpretable
\item We should measure interpretability
\item Interpretability should reflect the world we want
\end{itemize}
\end{block}
}
\end{frame}
\begin{frame}{Future Work}
\begin{itemize}
\item Decide as a community what we want
\item Make it easier for human-driven evaluation
\item Have better models of individual users (e.g., item response
theory)
\item Focus on collaboration
\begin{itemize}
\item Triage
\item Sensemaking
\item Question answering
\item Media consumption
\end{itemize}
\end{itemize}
\end{frame}
\frame{
\frametitle{Thanks}
\begin{block}{Collaborators}
\textsc{naqt}, Hal Daum\'e III (UMD), Marine Carpuat, Leah Findlater (UMD), Kevin Seppi
(BYU), Eric Ringger
\end{block}
\begin{columns}
\column{.75\linewidth}
\begin{block}{Funders}
\begin{center}
\includegraphics[width=0.2\linewidth]{general_figures/nsf}
\includegraphics[width=0.2\linewidth]{general_figures/darpa}
\includegraphics[width=0.2\linewidth]{general_figures/arl}
\includegraphics[width=0.2\linewidth]{general_figures/iarpa}
\end{center}
\end{block}
\column{.3\linewidth}
\begin{block}{Supporters}
\gfxq{naqt}{1.0}
\end{block}
\end{columns}
}
\frame{
\begin{columns}
\column{.5\linewidth}
\includegraphics[width=.8\linewidth]{general_figures/forough}
\column{.5\linewidth}
\begin{block}{ALTO: Active Learning with Topic Overviews for Speeding Label Induction and Document Labeling}
Forough Poursabzi-Sangdeh, Jordan Boyd-Graber, Leah Findlater, and Kevin Seppi. Association for Computational Linguistics, 2016.
\end{block}
\end{columns}
}
\fsi{interactive_topic_models/alto_interface}{}
\fsi{interactive_topic_models/alto_interface_highlight}{Direct users
to document}
\fsi{interactive_topic_models/alto/user_talk_1}{ Active learning if time is short}
\fsi{interactive_topic_models/alto/user_talk_2}{ Better than status quo}
\fsi{interactive_topic_models/alto/user_talk_3}{ Active learning can
help topic models }
\fsi{interactive_topic_models/alto/user_talk_4}{ Topic models help
users understand the collection }
\fsi{interactive_topic_models/alto/user_talk_4}{ Moral: machines and
humans together (if you let them) }
\fsi{qb/viz_first_draft}{Andrea Lin}
\begin{frame}{References}
\bibliographystyle{style/acl}
\tiny
\bibliography{bib/journal-full,bib/jbg,bib/hhe,bib/alvin,teaparty/vietan,bib/hoyle}
\end{frame}
\begin{frame}{RC TRUST}
\begin{center}
\includegraphics[width=0.7\paperwidth]{job_talks/trust_research_centers}
\end{center}
\small
\only<2>{
\begin{columns}
\column{.6\linewidth}
\begin{block}{Psychology \& Social Sciences}
\begin{itemize}
\item Method: Item Response Theory
\item Method: Ideal Point Models
\item Application: Multilingual and Multicultural Models of
Persuasion and Alliance Building
\item Collaboration: Bundesverfassungsgericht Entscheidungen
\end{itemize}
\end{block}
\column{.4\linewidth}
\end{columns}
}
\only<3>{
\begin{columns}
\column{.1\linewidth}
\column{.6\linewidth}
\begin{block}{AI \& ML}
\begin{itemize}
\item Method: Reinforcement Learning
\item Method: Neural Text Similarity
\item Application: Training QA Retrieval Mechanisms
\item Collaboration: Improving Google QA
\end{itemize}
\end{block}
\column{.3\linewidth}
\end{columns}
}
\only<4>{
\begin{columns}
\column{.3\linewidth}
\column{.6\linewidth}
\begin{block}{Data Science \& Statistical Learning}
\begin{itemize}
\item Method: Bayesian Nonparametrics
\item Method: Interactive Dirichlet Forest Priors
\item Application: Sensemaking
\item Collaboration: Monitoring Local Reseliency
\end{itemize}
\end{block}
\column{.1\linewidth}
\end{columns}
}
\only<5>{
\begin{columns}
\column{.4\linewidth}
\column{.6\linewidth}
\begin{block}{Cybersecurity and Privacy}
\begin{itemize}
\item Method: Adversarial Example Construction
\item Method: Disinformation Gamefication
\item Application: Fake News Detection
\item Collaboration: Climate Fact Checking
\end{itemize}
\end{block}
\end{columns}
}
\end{frame}
\end{document}