This repository has been archived by the owner on Mar 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 92
/
renderer.py
322 lines (271 loc) · 13.2 KB
/
renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""Wrap the generator to render a sequence of images"""
import torch
import torch.nn.functional as F
import numpy as np
from torch import random
import tqdm
import copy
import trimesh
class Renderer(object):
def __init__(self, generator, discriminator=None, program=None):
self.generator = generator
self.discriminator = discriminator
self.sample_tmp = 0.65
self.program = program
self.seed = 0
if (program is not None) and (len(program.split(':')) == 2):
from training.dataset import ImageFolderDataset
self.image_data = ImageFolderDataset(program.split(':')[1])
self.program = program.split(':')[0]
else:
self.image_data = None
def set_random_seed(self, seed):
self.seed = seed
torch.manual_seed(seed)
np.random.seed(seed)
def __call__(self, *args, **kwargs):
self.generator.eval() # eval mode...
if self.program is None:
if hasattr(self.generator, 'get_final_output'):
return self.generator.get_final_output(*args, **kwargs)
return self.generator(*args, **kwargs)
if self.image_data is not None:
batch_size = 1
indices = (np.random.rand(batch_size) * len(self.image_data)).tolist()
rimages = np.stack([self.image_data._load_raw_image(int(i)) for i in indices], 0)
rimages = torch.from_numpy(rimages).float().to(kwargs['z'].device) / 127.5 - 1
kwargs['img'] = rimages
outputs = getattr(self, f"render_{self.program}")(*args, **kwargs)
if self.image_data is not None:
imgs = outputs if not isinstance(outputs, tuple) else outputs[0]
size = imgs[0].size(-1)
rimg = F.interpolate(rimages, (size, size), mode='bicubic', align_corners=False)
imgs = [torch.cat([img, rimg], 0) for img in imgs]
outputs = imgs if not isinstance(outputs, tuple) else (imgs, outputs[1])
return outputs
def get_additional_params(self, ws, t=0):
gen = self.generator.synthesis
batch_size = ws.size(0)
kwargs = {}
if not hasattr(gen, 'get_latent_codes'):
return kwargs
s_val, t_val, r_val = [[0, 0, 0]], [[0.5, 0.5, 0.5]], [0.]
# kwargs["transformations"] = gen.get_transformations(batch_size=batch_size, mode=[s_val, t_val, r_val], device=ws.device)
# kwargs["bg_rotation"] = gen.get_bg_rotation(batch_size, device=ws.device)
# kwargs["light_dir"] = gen.get_light_dir(batch_size, device=ws.device)
kwargs["latent_codes"] = gen.get_latent_codes(batch_size, tmp=self.sample_tmp, device=ws.device)
kwargs["camera_matrices"] = self.get_camera_traj(t, ws.size(0), device=ws.device)
return kwargs
def get_camera_traj(self, t, batch_size=1, traj_type='pigan', device='cpu'):
gen = self.generator.synthesis
if traj_type == 'pigan':
range_u, range_v = gen.C.range_u, gen.C.range_v
pitch = 0.2 * np.cos(t * 2 * np.pi) + np.pi/2
yaw = 0.4 * np.sin(t * 2 * np.pi)
u = (yaw - range_u[0]) / (range_u[1] - range_u[0])
v = (pitch - range_v[0]) / (range_v[1] - range_v[0])
cam = gen.get_camera(batch_size=batch_size, mode=[u, v, 0.5], device=device)
else:
raise NotImplementedError
return cam
def render_rotation_camera(self, *args, **kwargs):
batch_size, n_steps = 2, kwargs["n_steps"]
gen = self.generator.synthesis
if 'img' not in kwargs:
ws = self.generator.mapping(*args, **kwargs)
else:
ws, _ = self.generator.encoder(kwargs['img'])
# ws = ws.repeat(batch_size, 1, 1)
# kwargs["not_render_background"] = True
if hasattr(gen, 'get_latent_codes'):
kwargs["latent_codes"] = gen.get_latent_codes(batch_size, tmp=self.sample_tmp, device=ws.device)
kwargs.pop('img', None)
out = []
cameras = []
relatve_range_u = kwargs['relative_range_u']
u_samples = np.linspace(relatve_range_u[0], relatve_range_u[1], n_steps)
for step in tqdm.tqdm(range(n_steps)):
# Set Camera
u = u_samples[step]
kwargs["camera_matrices"] = gen.get_camera(batch_size=batch_size, mode=[u, 0.5, 0.5], device=ws.device)
cameras.append(gen.get_camera(batch_size=batch_size, mode=[u, 0.5, 0.5], device=ws.device))
with torch.no_grad():
out_i = gen(ws, **kwargs)
if isinstance(out_i, dict):
out_i = out_i['img']
out.append(out_i)
if 'return_cameras' in kwargs and kwargs["return_cameras"]:
return out, cameras
else:
return out
def render_rotation_camera3(self, styles=None, *args, **kwargs):
gen = self.generator.synthesis
n_steps = 36 # 120
if styles is None:
batch_size = 2
if 'img' not in kwargs:
ws = self.generator.mapping(*args, **kwargs)
else:
ws = self.generator.encoder(kwargs['img'])['ws']
# ws = ws.repeat(batch_size, 1, 1)
else:
ws = styles
batch_size = ws.size(0)
# kwargs["not_render_background"] = True
# Get Random codes and bg rotation
self.sample_tmp = 0.72
if hasattr(gen, 'get_latent_codes'):
kwargs["latent_codes"] = gen.get_latent_codes(batch_size, tmp=self.sample_tmp, device=ws.device)
kwargs.pop('img', None)
# if getattr(gen, "use_noise", False):
# from dnnlib.geometry import extract_geometry
# kwargs['meshes'] = {}
# low_res, high_res = gen.resolution_vol, gen.img_resolution
# res = low_res * 2
# while res <= high_res:
# kwargs['meshes'][res] = [trimesh.Trimesh(*extract_geometry(gen, ws, resolution=res, threshold=30.))]
# kwargs['meshes'][res] += [
# torch.randn(len(kwargs['meshes'][res][0].vertices),
# 2, device=ws.device)[kwargs['meshes'][res][0].faces]]
# res = res * 2
# if getattr(gen, "use_noise", False):
# kwargs['voxel_noise'] = gen.get_voxel_field(styles=ws, n_vols=2048, return_noise=True, sphere_noise=True)
# if getattr(gen, "use_voxel_noise", False):
# kwargs['voxel_noise'] = gen.get_voxel_field(styles=ws, n_vols=128, return_noise=True)
kwargs['noise_mode'] = 'const'
out = []
tspace = np.linspace(0, 1, n_steps)
range_u, range_v = gen.C.range_u, gen.C.range_v
for step in tqdm.tqdm(range(n_steps)):
t = tspace[step]
pitch = 0.2 * np.cos(t * 2 * np.pi) + np.pi/2
yaw = 0.4 * np.sin(t * 2 * np.pi)
u = (yaw - range_u[0]) / (range_u[1] - range_u[0])
v = (pitch - range_v[0]) / (range_v[1] - range_v[0])
kwargs["camera_matrices"] = gen.get_camera(
batch_size=batch_size, mode=[u, v, t], device=ws.device)
with torch.no_grad():
out_i = gen(ws, **kwargs)
if isinstance(out_i, dict):
out_i = out_i['img']
out.append(out_i)
return out
def render_rotation_both(self, *args, **kwargs):
gen = self.generator.synthesis
batch_size, n_steps = 1, 36
if 'img' not in kwargs:
ws = self.generator.mapping(*args, **kwargs)
else:
ws, _ = self.generator.encoder(kwargs['img'])
ws = ws.repeat(batch_size, 1, 1)
# kwargs["not_render_background"] = True
# Get Random codes and bg rotation
kwargs["latent_codes"] = gen.get_latent_codes(batch_size, tmp=self.sample_tmp, device=ws.device)
kwargs.pop('img', None)
out = []
tspace = np.linspace(0, 1, n_steps)
range_u, range_v = gen.C.range_u, gen.C.range_v
for step in tqdm.tqdm(range(n_steps)):
t = tspace[step]
pitch = 0.2 * np.cos(t * 2 * np.pi) + np.pi/2
yaw = 0.4 * np.sin(t * 2 * np.pi)
u = (yaw - range_u[0]) / (range_u[1] - range_u[0])
v = (pitch - range_v[0]) / (range_v[1] - range_v[0])
kwargs["camera_matrices"] = gen.get_camera(
batch_size=batch_size, mode=[u, v, 0.5], device=ws.device)
with torch.no_grad():
out_i = gen(ws, **kwargs)
if isinstance(out_i, dict):
out_i = out_i['img']
kwargs_n = copy.deepcopy(kwargs)
kwargs_n.update({'render_option': 'early,no_background,up64,depth,normal'})
out_n = gen(ws, **kwargs_n)
out_n = F.interpolate(out_n,
size=(out_i.size(-1), out_i.size(-1)),
mode='bicubic', align_corners=True)
out_i = torch.cat([out_i, out_n], 0)
out.append(out_i)
return out
def render_rotation_grid(self, styles=None, return_cameras=False, *args, **kwargs):
gen = self.generator.synthesis
if styles is None:
batch_size = 1
ws = self.generator.mapping(*args, **kwargs)
ws = ws.repeat(batch_size, 1, 1)
else:
ws = styles
batch_size = ws.size(0)
kwargs["latent_codes"] = gen.get_latent_codes(batch_size, tmp=self.sample_tmp, device=ws.device)
kwargs.pop('img', None)
if getattr(gen, "use_voxel_noise", False):
kwargs['voxel_noise'] = gen.get_voxel_field(styles=ws, n_vols=128, return_noise=True)
out = []
cameras = []
range_u, range_v = gen.C.range_u, gen.C.range_v
a_steps, b_steps = 6, 3
aspace = np.linspace(-0.4, 0.4, a_steps)
bspace = np.linspace(-0.2, 0.2, b_steps) * -1
for b in tqdm.tqdm(range(b_steps)):
for a in range(a_steps):
t_a = aspace[a]
t_b = bspace[b]
camera_mat = gen.camera_matrix.repeat(batch_size, 1, 1).to(ws.device)
loc_x = np.cos(t_b) * np.cos(t_a)
loc_y = np.cos(t_b) * np.sin(t_a)
loc_z = np.sin(t_b)
loc = torch.tensor([[loc_x, loc_y, loc_z]], dtype=torch.float32).to(ws.device)
from dnnlib.camera import look_at
R = look_at(loc)
RT = torch.eye(4).reshape(1, 4, 4).repeat(batch_size, 1, 1)
RT[:, :3, :3] = R
RT[:, :3, -1] = loc
world_mat = RT.to(ws.device)
#kwargs["camera_matrices"] = gen.get_camera(
# batch_size=batch_size, mode=[u, v, 0.5], device=ws.device)
kwargs["camera_matrices"] = (camera_mat, world_mat, "random", None)
with torch.no_grad():
out_i = gen(ws, **kwargs)
if isinstance(out_i, dict):
out_i = out_i['img']
# kwargs_n = copy.deepcopy(kwargs)
# kwargs_n.update({'render_option': 'early,no_background,up64,depth,normal'})
# out_n = gen(ws, **kwargs_n)
# out_n = F.interpolate(out_n,
# size=(out_i.size(-1), out_i.size(-1)),
# mode='bicubic', align_corners=True)
# out_i = torch.cat([out_i, out_n], 0)
out.append(out_i)
if return_cameras:
return out, cameras
else:
return out
def render_rotation_camera_grid(self, *args, **kwargs):
batch_size, n_steps = 1, 60
gen = self.generator.synthesis
bbox_generator = self.generator.synthesis.boundingbox_generator
ws = self.generator.mapping(*args, **kwargs)
ws = ws.repeat(batch_size, 1, 1)
# Get Random codes and bg rotation
kwargs["latent_codes"] = gen.get_latent_codes(batch_size, tmp=self.sample_tmp, device=ws.device)
del kwargs['render_option']
out = []
for v in [0.15, 0.5, 1.05]:
for step in tqdm.tqdm(range(n_steps)):
# Set Camera
u = step * 1.0 / (n_steps - 1) - 1.0
kwargs["camera_matrices"] = gen.get_camera(batch_size=batch_size, mode=[u, v, 0.5], device=ws.device)
with torch.no_grad():
out_i = gen(ws, render_option=None, **kwargs)
if isinstance(out_i, dict):
out_i = out_i['img']
# option_n = 'early,no_background,up64,depth,direct_depth'
# option_n = 'early,up128,no_background,depth,normal'
# out_n = gen(ws, render_option=option_n, **kwargs)
# out_n = F.interpolate(out_n,
# size=(out_i.size(-1), out_i.size(-1)),
# mode='bicubic', align_corners=True)
# out_i = torch.cat([out_i, out_n], 0)
out.append(out_i)
# out += out[::-1]
return out