-
Notifications
You must be signed in to change notification settings - Fork 8
/
pretraining.py
250 lines (220 loc) · 8.99 KB
/
pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright (c) Meta Platforms, Inc. and affiliates.
# LICENSE file in the root directory of this source tree.
import random
import os
from datetime import datetime
import torch
import pytorch_lightning as pl
from dataset.ego4d.dataloader import filter_narration, clean_narration_text
from lib.imu_models import MW2StackRNNPooling
from lib.clip_model import ClipPLModel
from lib.train_modules import MultimodalContrastiveLearningModule
from lib.data_modules import Ego4dDataModule, UnsupEgo4dDataModule, Split
from lib.evaluation import evaluate
from argparse import ArgumentParser
import yaml
def train(configs):
random.seed(1234)
# Load Model Parameters
model_hparams = configs.get("model_hparams", {})
model_name = model_hparams.get("model_name")
model_suffix = model_hparams.get("model_suffix", "")
imu_encoder_name = model_hparams.get("imu_encoder_name")
audio_encoder_name = model_hparams.get("audio_encoder_name")
video_encoder_name = model_hparams.get("video_encoder_name")
window_sec = model_hparams.get("window_sec")
target_fps = model_hparams.get("target_fps")
datasetname = model_hparams.get("datasetname", "ego4d")
imu_sampling_rate = model_hparams.get(
"imu_sampling_rate", 200 if datasetname == "ego4d" else 1000
)
final_embedding_size = model_hparams.get("final_embedding_size", 512)
# Params for the trainer
train_hparams = configs.get("train_hparams", {})
source_modality = train_hparams.get("source_modality")
target_modalities = train_hparams.get("target_modalities")
limit_train_batches = train_hparams.get("limit_train_batches")
batch_size = train_hparams.get("batch_size")
max_epochs = train_hparams.get("max_epochs")
gpus = train_hparams.get("gpus")
num_workers_for_dm = train_hparams.get("num_workers_for_dm")
test_only = train_hparams.get("test_only")
trainer_strategy = train_hparams.get("trainer_strategy")
freeze_modalities = train_hparams.get("freeze_modalities")
path_load_pretrained_imu_encoder = train_hparams.get(
"path_load_pretrained_imu_encoder"
)
path_load_pretrained_audio_encoder = train_hparams.get(
"path_load_pretrained_audio_encoder"
)
# Paths, etc.
path_root_save_dir = f"./saved/{model_name}"
if not os.path.exists(path_root_save_dir):
os.makedirs(path_root_save_dir)
target_modalities.sort()
list_modalities = [source_modality] + target_modalities
source_modality_initial = source_modality[0]
target_modality_initials = "".join([m[0] for m in target_modalities])
if source_modality == "imu":
source_encoder_name = imu_encoder_name
if source_modality == "audio":
source_encoder_name = audio_encoder_name
model_identifier = (
f"{model_name}_s_{source_modality_initial}_t_{target_modality_initials}"
+ f"_se_{source_encoder_name}_w_{window_sec}"
)
if model_suffix != "":
model_identifier += "_" + model_suffix
else:
model_identifier += "_%d" % (int(datetime.now().timestamp() % 10000))
path_save_checkpoint = f"{path_root_save_dir}/{model_identifier}_best.ckpt"
path_save_src_encoder = f"{path_root_save_dir}/{model_identifier}_src_encoder.pt"
result_path = f"./results/{model_identifier}"
configs["path_save_checkpoint"] = path_save_checkpoint
# Initialize the data module
dataset_params = {
"window_sec": window_sec,
"target_fps": target_fps,
"list_modalities": list_modalities,
"clean_narration_func": clean_narration_text,
"filter_narration_func": filter_narration,
"imu_sampling_rate": imu_sampling_rate,
}
if "text" in list_modalities:
datamodule = Ego4dDataModule(
batch_size=batch_size,
num_workers=num_workers_for_dm,
pin_memory=True,
drop_last=True,
dataset_params=dataset_params,
)
else:
datamodule = UnsupEgo4dDataModule(
batch_size=batch_size,
num_workers=num_workers_for_dm,
pin_memory=True,
drop_last=True,
dataset_params=dataset_params,
)
# Initialize encoder models
text_encoder, video_encoder, imu_encoder = None, None, None
modality_to_encoder = {}
if "text" in list_modalities:
# For now we only use a CLIP-based text model
text_encoder = ClipPLModel(freeze=True)
modality_to_encoder["text"] = text_encoder
if "imu" in list_modalities:
imu_encoder = MW2StackRNNPooling(size_embeddings=final_embedding_size)
if path_load_pretrained_imu_encoder:
# Load the parameters
imu_encoder.load_state_dict(torch.load(path_load_pretrained_imu_encoder))
print("loaded pretrained imu model")
modality_to_encoder["imu"] = imu_encoder
if "video" in list_modalities:
# For now we only use a CLIP-based image model as a video encoder
video_encoder = (
ClipPLModel(freeze=True) if text_encoder is None else text_encoder
)
video_encoder.video_encoder_name = video_encoder_name
modality_to_encoder["video"] = video_encoder
for modality in list_modalities:
if modality in freeze_modalities:
modality_to_encoder[modality].eval()
print("Freezing modality: ", modality)
modality_to_encoder[modality].freeze()
# Initialize the training module for contrastive training
model = MultimodalContrastiveLearningModule(
modality_to_encoder=modality_to_encoder,
source_modality=source_modality,
target_modalities=target_modalities,
)
# Checkpoint settings
checkpoint_callback = pl.callbacks.ModelCheckpoint(
monitor="val_loss",
dirpath=path_root_save_dir,
filename=f"{model_identifier}" + "-{epoch:02d}-{val_loss:.2f}",
save_top_k=3,
mode="min",
)
# Initialize Trainer
trainer = pl.Trainer(
max_epochs=max_epochs,
gpus=gpus,
strategy=trainer_strategy,
limit_train_batches=limit_train_batches,
enable_checkpointing=True,
callbacks=[checkpoint_callback],
)
if not test_only:
# Start training
print("Start training: [%s] ..." % path_save_checkpoint)
trainer.fit(model, datamodule=datamodule)
# Save the checkpoint & encoder to a temp folder
torch.distributed.barrier()
print("Best checkpoint:", checkpoint_callback.best_model_path)
model.load_from_checkpoint(
checkpoint_callback.best_model_path,
modality_to_encoder=modality_to_encoder,
source_modality=source_modality,
target_modalities=target_modalities,
)
src_encoder = None
if source_modality == "imu":
src_encoder = model.imu_encoder
elif source_modality == "audio":
src_encoder = model.audio_encoder
elif source_modality == "video":
src_encoder = model.video_encoder
torch.save(src_encoder.state_dict(), path_save_src_encoder)
else:
print("Skipping training ...")
# Test the performance
print("Start evaluating ...")
metrics = evaluate(
datamodule.get_dataset(
"test",
window_sample_rate=1.0,
video_uid_sample_rate=0.25,
max_n_windows_per_video=2,
),
datamodule.collate_fn,
model,
source_modality,
target_modalities,
result_path,
configs,
)
print(metrics)
return metrics
if __name__ == "__main__":
parser = ArgumentParser()
# Main parameters are defined in a YAML file
parser.add_argument(
"--path_configs", default="./configs/train_contrastive/default.yaml"
)
# Override-params for a quick resource allocation adjustment or for debugging purposes
# If it is *not* None, the values in args override the values in the YAML file.
parser.add_argument("--gpus", default=None)
parser.add_argument("--num_workers_for_dm", default=None)
parser.add_argument("--max_epochs", default=None)
parser.add_argument("--test_only", default=None)
parser.add_argument("--path_load_pretrained_imu_encoder", default=None)
args = parser.parse_args()
# Load the YAML file
with open(args.path_configs) as f:
configs = yaml.load(f, Loader=yaml.FullLoader)
# Override the configs with args, if requested
if args.gpus is not None:
configs["train_hparams"]["gpus"] = int(args.gpus)
if args.num_workers_for_dm is not None:
configs["train_hparams"]["num_workers_for_dm"] = int(args.num_workers_for_dm)
if args.max_epochs is not None:
configs["train_hparams"]["max_epochs"] = int(args.max_epochs)
if args.test_only is not None:
configs["train_hparams"]["test_only"] = eval(args.test_only)
if args.path_load_pretrained_imu_encoder is not None:
configs["train_hparams"][
"path_load_pretrained_imu_encoder"
] = args.path_load_pretrained_imu_encoder
print(configs)
train(configs)