forked from tomhartke/knowledge-graph-from-GPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
basic_user_interface.py
731 lines (594 loc) · 35.4 KB
/
basic_user_interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
import os
import openai
import re
import json
import numpy as np
import pandas as pd
from collections import Counter
from typing import Any, Optional, Tuple, Dict, List, NamedTuple, Set
import scipy
import time
from pprint import pprint as pprint
import tkinter as tk
from tkinter import ttk
from basic_utils import *
from knowledge_graph import *
from knowledge_graph_querying import *
from initial_card_processing import *
# Load your API key from an environment variable or secret management service
openai.api_key = os.getenv("OPENAI_API_KEY")
model_chat_engine = "gpt-3.5-turbo"
SYSTEM_MESSAGE = ("You are a helpful professor and polymath scientist. You want to help a fellow researcher learn more about the world. "
+ "You are clear, concise, and precise in your answers, and you follow instructions carefully.")
def _gen_chat_response(prompt='hi'):
response = openai.ChatCompletion.create(
model=model_chat_engine,
messages=[
{"role": "system", "content": SYSTEM_MESSAGE},
{"role": "user", "content": prompt},
])
message = response.choices[0]['message']
return message['content']
def gen_chat_response(prompt='hi'):
prompt_succeeded = False
wait_time = 0.1
while not prompt_succeeded:
try:
response = _gen_chat_response(prompt)
prompt_succeeded = True
except:
print(' LM response failed. Server probably overloaded. Retrying after ', wait_time, ' seconds...')
time.sleep(wait_time)
wait_time += wait_time*2 # exponential backoff
return response
def convert_abstraction_group_to_concept_list(abs_grp):
"""
Takes abstraction group dictionary, and returns a list of unique concepts as strings
"""
concept_list = set()
[concept_list.update(concepts) for concepts in abs_grp.values()]
return list(concept_list)
def sample_question_list(question_list):
""" Take up to 3 questions randomly from a question list and concatenate. used for getting subject lists"""
return " ".join(np.random.choice(question_list, size=min(3, len(question_list)), replace=False))
def user_triage_list(objects_to_triage):
"""
Triage a list of objects to decide what to focus on next
Displays objects to user, and asks whether to keep or not. Returns refined list
"""
q_to_keep = []
for _i, q in enumerate(objects_to_triage):
if isinstance(q, tuple):
print("Object " + str(_i+1) + ":\n" + '\n'.join(q))
else:
print("Object " + str(_i+1) + ": " + str(q))
answer = input("Choose which to keep (type number to keep): ")
selected_qs = [objects_to_triage[_i] for _i in range(len(objects_to_triage)) if str(_i + 1) in answer]
return selected_qs
# Extract card representation for existing question/answer pair
# Extract question concept list for a new question
def extract_abstraction_groups(knowledgeGraph,
question,
answer=None,
related_cardIDs = [], # only show if provided
num_random_cards_to_show=10,
verbose=False):
"""
A flexible function to extract the abstraction groups (part of the embedding) from a question, or a question and answer.
It can show random cards, or related cards as examples.
"""
add_answer_text = "" if answer is None else " and answers"
prefix = (f"Professor Smith has provided a set of questions{add_answer_text} to his class to review. "
+ "He has also provided a list of key words and concepts extracted from each one. "
+ f"These words are related to the content of the ideas, not the exact words in the questions{add_answer_text}. "
+ "Moreover, some words convey the very general category of the question (for example, those in the labeled category '4'), "
+ "while others relate to very specific topics (labeled '-1'). From '4' to '-1', the categories become less abstract. "
+ "\nHere are a few examples:\n\n"
)
suffix = (f"\nProfessor Smith has not had time to extract the key words for all the questions{add_answer_text}, so he has asked for our help "
+ "extracting the key words and concepts from one more.\n"
+ "Here are his instructions: If we do not know the topic of the question, he has asked us to provide our best guess, "
+ "giving at least one key word in each category. "
+ "Ideally, we must extract a similar number of key words as the other examples. "
+ "Remember, these key words are to help the students understand the topic, and don't have to be perfect.\n\n"
+ "Here is the new question:\n"
+ "Question: {" + question + '}\n'
+ ("" if answer is None else ("Answer: {" + answer + '}\n'))
+ "Extracted key words and concepts (report in the format of a JSON dictionary):"
)
random_cardIDs = sample_random_cardIDs(knowledgeGraph, num_cards_to_show=num_random_cards_to_show)
if len(related_cardIDs) > 0:
used_cardIDs = np.append(random_cardIDs, related_cardIDs)
else:
used_cardIDs = random_cardIDs
if answer is None:
example_cards_and_concept_lists = chain_card_example_objects(["question", "abstraction_groups"], used_cardIDs, knowledgeGraph)
else:
example_cards_and_concept_lists = chain_card_example_objects(["question", "answer", "abstraction_groups"], used_cardIDs, knowledgeGraph)
prompt = prefix + example_cards_and_concept_lists + suffix
response_text = gen_chat_response(prompt)
if verbose:
print(prompt + response_text)
try:
abstraction_groups = json.loads(response_text)
assert isinstance(abstraction_groups, dict), "Json loading failed"
except:
print("Json loading failed")
return None
return abstraction_groups
def get_card_representation(knowledgeGraph, question, answer, num_random_cards_to_show=5, verbose=False):
"""
gets card representation that can be directly loaded into a Pandas dataframe
by calling LLM to extract abstraction_groups
example call:
new_card_rep = get_card_representation(kGraph, q, a)
"""
abstraction_groups = extract_abstraction_groups(knowledgeGraph, question, answer,
num_random_cards_to_show=num_random_cards_to_show,
verbose=verbose)
if abstraction_groups is None:
return None
return [question, answer, None, abstraction_groups]
def get_question_subject_list_in_graph(knowledgeGraph,
question,
related_cardIDs = [],
num_random_cards_to_show=5, verbose=False):
"""
Takes a question, and shows language model a few examples of extracted concepts from other questions, and then
extracts the concepts and subject list for this question that are in the knowledge graph.
If related cards are provided, then it will show those as well.
"""
abstraction_groups = extract_abstraction_groups(knowledgeGraph, question, answer=None,
related_cardIDs=related_cardIDs,
num_random_cards_to_show=num_random_cards_to_show,
verbose=verbose)
if abstraction_groups is None or (not isinstance(abstraction_groups, dict)):
return None
else:
concept_list_full = convert_abstraction_group_to_concept_list(abstraction_groups)
concept_list_in_graph = extract_concepts_in_knowledgeGraph_from_subject_list(concept_list_full, knowledgeGraph)
if concept_list_in_graph:
return concept_list_in_graph
else:
return None
def get_refined_question_subject_list_in_graph(knowledgeGraph,
question,
num_related_cards_to_show=5,
num_random_cards_to_show=5,
verbose=False):
"""
Wrapper to iterate get_question_subject_list_in_graph() twice
Example call:
concept_list = get_refined_question_subject_list_in_graph(kGraph, q)
"""
# First call
concept_list_in_graph = get_question_subject_list_in_graph(knowledgeGraph, question,
num_random_cards_to_show=num_random_cards_to_show,
verbose=verbose)
concept_list_in_graph=None
if concept_list_in_graph is None:
# we have no idea what this is about. Sample more random card IDs and try again
related_cardIDs = sample_random_cardIDs(knowledgeGraph, num_cards_to_show=num_random_cards_to_show)
else:
related_cardIDs = get_related_cardIDs_from_subject_list(concept_list_in_graph, knowledgeGraph,
num_cards_to_show=num_related_cards_to_show)
concept_list_in_graph = get_question_subject_list_in_graph(knowledgeGraph, question,
related_cardIDs=related_cardIDs,
num_random_cards_to_show=num_random_cards_to_show,
verbose=verbose)
return concept_list_in_graph
# Answer a list of questions, generating natural language answers, and saving them in a combined list.
def get_answers_to_questions(knowledgeGraph,
question_list : List[str], # the new questions to be answered
question_subject_list : List[str] = [], # the subjects to find relevant things in the knowledge graph to display
num_related_cards_to_show=10,
verbose=False,
extra_verbose=False):
"""
Answers questions based on style of knowledge graph, and by
exposing related cards in knowledge graph back to the language model before answering
"""
if question_subject_list == None or len(question_subject_list) == 0:
# random choice
related_cardIDs = sample_random_cardIDs(knowledgeGraph, num_cards_to_show=num_related_cards_to_show)
else:
related_cardIDs = get_related_cardIDs_from_subject_list(question_subject_list, knowledgeGraph,
num_cards_to_show=num_related_cards_to_show)
example_q_and_a = chain_card_example_objects(["question", "answer"], related_cardIDs, knowledgeGraph)
question_list_wrapped = "".join([QUESTION_PROMPT + "{" + q + "}\n" for q in question_list])
prompt = ("Professor Smith has provided the following question and answer pairs to the class to review as flashcards. "
+ "These are meant to be clear, concise, and self-contained questions and answers, organized into "
+ "simple concepts that can be memorized and retained.\n\n"
+ "Example flashcards:\n\n"
+ example_q_and_a
+ "\n\nWe have been asked to answer an additional set of questions in a similar style "
+ "(level of detail, brevity, structure, assumed knowledge, etc.) to the above examples. "
+ "We are to provide the questions and answers in the exact same format (including brackets),\n"
+ "Question: {restated question}\nAnswer: {our answer}\n\n"
+ f"Here are the new {len(question_list)} question(s) we must answer:\n"
+ question_list_wrapped
)
response_text = gen_chat_response(prompt)
new_questions = [card.split("Answer:")[0].strip(" \n").strip("{}") for card in response_text.split("Question:")]
new_answers = [card.split("Question:")[0].strip(" \n").strip("{}") for card in response_text.split("Answer:")]
new_question_answer_pairs = [(q, a) for q, a in zip(new_questions, new_answers) if (len(q) > 0 and len(a) > 0)]
if extra_verbose:
print(prompt + response_text)
elif verbose:
print(new_question_answer_pairs)
return new_question_answer_pairs
# Parse sets of question/answer pairs and load into knowledge graph.
def load_question_answer_pairs_into_knowledgeGraph(new_question_answer_pairs, cards_df, knowledgeGraph):
def load_question_answer_pairs_into_dataframe(new_question_answer_pairs, cards_df, knowledgeGraph):
new_cards_df = cards_df[0:0].copy()
for ind, (q, a) in enumerate(new_question_answer_pairs):
print(ind)
new_card_rep = get_card_representation(knowledgeGraph, q, a)
new_cards_df.loc[len(new_cards_df.index)] = new_card_rep
return new_cards_df
def load_dataframe_into_knowledgeGraph(new_cards_df, knowledgeGraph):
new_card_deck = create_card_deck_from_dataframe_of_abstraction_groups(new_cards_df)
title_list = knowledgeGraph.add_card_deck(new_card_deck, verbose=True)
knowledgeGraph.update_all_embeddings(verbose=True)
return None
new_cards_df = load_question_answer_pairs_into_dataframe(new_question_answer_pairs, cards_df, knowledgeGraph)
load_dataframe_into_knowledgeGraph(new_cards_df, knowledgeGraph)
return new_cards_df
# Generate list of new questions based on existing style and structure of the knowledge graph.
def get_suggested_further_questions(knowledgeGraph,
topic=None,
question_subject_list_in_graph=None,
target_question_list=None,
goal_command = "expand and explore",
num_random_clusters_of_cards_to_show=3,
num_random_related_cards_to_show=10,
num_related_cards_in_graph_to_show=5,
num_questions_to_generate=5,
increasing_abstraction=True,
verbose=False,
extra_verbose=False):
# Random examples
random_example_clusters_text = get_related_question_set_examples(knowledgeGraph,
input_cardIDs=None,
num_seed_cards_to_show=num_random_clusters_of_cards_to_show,
num_related_cards_to_show=num_random_related_cards_to_show,
increasing_abstraction=increasing_abstraction)
# Related questions in knowledge graph derived from subject_list
if (question_subject_list_in_graph is not None) and num_related_cards_in_graph_to_show > 0:
related_cardIDs = get_related_cardIDs_from_subject_list(question_subject_list_in_graph, knowledgeGraph,
num_cards_to_show=num_related_cards_in_graph_to_show)
related_questions_verbose = chain_card_example_objects(["question"], related_cardIDs, knowledgeGraph)
# Clean up the example questions to be a bit more compact spatially
related_questions_text_unwrapped = "".join([s +'\n' for s in related_questions_verbose.splitlines() if s.strip()])
related_questions_text = ("\nHere are examples of a few questions the class has already learned "
+ "and carefully reviewed:\n"
+ related_questions_text_unwrapped
)
else:
related_questions_text = ""
# Existing cluster of questions
if target_question_list is not None and len(target_question_list) > 0:
question_list_text = (f"These new questions should relate to the following cluster of ideas:\n"
+ "Question: {" + "}\nQuestion: {".join(target_question_list)
+ '}\n\n'
)
else:
question_list_text = ""
if topic is not None:
topic_statement_text = f"\nThese questions should be about the topic: \"{topic}\".\n"
final_request_text = f"{num_questions_to_generate} new questions about \"{topic}\" (goal: {goal_command}):"
else:
topic_statement_text = ""
final_request_text = f"{num_questions_to_generate} new questions (goal: {goal_command}):"
prompt = ("Professor Smith has provided a wide range of questions to his class to review. "
+ "These questions are meant to be sufficiently detailed to be understandable without further context. "
+ "Here are a few examples of clusters of ideas covered in the class:\n\n"
+ random_example_clusters_text
+ "\n----------\n"
+ related_questions_text
+ "\nWe have been asked to provide more questions to the class. "
+ topic_statement_text
+ question_list_text
+ "These questions should be on subjects that we think the class will find both interesting and useful. "
+ "Moreover, the questions should be concise and only cover one or two ideas each. "
+ 'Use the same format as the above examples (beginning each new question with "Q: {"). \n\n'
+ final_request_text
)
response_text = gen_chat_response(prompt)
generated_questions = response_text.strip()
generated_questions_list = generated_questions.split("Q: ")[1:]
generated_questions_list = [generated_question.strip("}{ \n") for generated_question in generated_questions_list]
if extra_verbose:
print(print(prompt + '\n' + response_text))
elif verbose:
print("\n".join(generated_questions_list))
return generated_questions_list
class ExplorationData:
def __init__(self,
topic="anything",
goal_command="explore",
new_question_list=[], # New questions to answer
question_subject_list_in_graph=None, # Questions we already know
question_list_in_graph=[], # Questions we already know
num_rand_clusters=3,
num_related_cards=5,
num_related_cards_in_graph=0,
num_questions_generate=5,
):
self.topic = topic
self.goal_command = goal_command
self.new_question_list = new_question_list
self.question_subject_list_in_graph = question_subject_list_in_graph
self.question_list_in_graph = question_list_in_graph
self.num_rand_clusters = num_rand_clusters
self.num_related_cards = num_related_cards
self.num_related_cards_in_graph = num_related_cards_in_graph
self.num_questions_generate = num_questions_generate
class QAEditApp(tk.Toplevel):
def __init__(self, root, knowledgeGraph, cards_df, question_answer_pairs=[]):
super().__init__()
self.question_answer_pairs = question_answer_pairs
self.checkbox_vars = []
self.question_entries = []
self.answer_entries = []
self.title("Edit QA Pairs")
self.create_widgets()
self.knowledgeGraph = knowledgeGraph
self.cards_df = cards_df
def create_widgets(self):
ttk.Label(self, text="Editing question answer pairs").grid(column=0, row=0, columnspan=3)
update_button = ttk.Button(self, text="Update All", command=self.update_all)
update_button.grid(column=1, row=1)
toggle_button = ttk.Button(self, text="Toggle All", command=self.toggle_all)
toggle_button.grid(column=0, row=1)
close_button = ttk.Button(self, text="Save and Reset", command=self.save_and_reset)
close_button.grid(column=2, row=1)
for i, (question, answer) in enumerate(self.question_answer_pairs):
checkbox_var = tk.BooleanVar()
checkbox_var.set(True)
checkbox = ttk.Checkbutton(self, variable=checkbox_var)
checkbox.grid(column=0, row=i+2)
self.checkbox_vars.append(checkbox_var)
question_text = tk.Text(self, width=30, height=5, wrap=tk.WORD)
question_text.insert(tk.END, question)
question_text.grid(column=1, row=i+2)
self.question_entries.append(question_text)
answer_text = tk.Text(self, width=90, height=5, wrap=tk.WORD)
answer_text.insert(tk.END, answer)
answer_text.grid(column=2, row=i+2)
self.answer_entries.append(answer_text)
def update_all(self):
updated_pairs = []
for i, (question_text, answer_text) in enumerate(zip(self.question_entries, self.answer_entries)):
if self.checkbox_vars[i].get():
question = question_text.get("1.0", tk.END).strip()
answer = answer_text.get("1.0", tk.END).strip()
updated_pairs.append((question, answer))
self.question_answer_pairs = updated_pairs
self.checkbox_vars = []
self.question_entries = []
self.answer_entries = []
self.clear_widgets()
self.create_widgets()
def toggle_all(self):
if len(self.checkbox_vars) == 0:
return
toggle_to = not self.checkbox_vars[0].get()
for checkbox_var in self.checkbox_vars:
checkbox_var.set(toggle_to)
def clear_widgets(self):
for widget in self.grid_slaves():
widget.destroy()
def save_and_reset(self,
json_file_title='my_flash_cards_general_cards_df_abstraction_groups'):
self.update_all()
# Save into knowledge graph
if len(self.question_answer_pairs) > 0:
new_cards_df = load_question_answer_pairs_into_knowledgeGraph(self.question_answer_pairs, self.cards_df, self.knowledgeGraph)
# Updated saved JSON file archive of flashcards to have the new ones
for index, row in new_cards_df.iterrows():
self.cards_df = self.cards_df.append(row, ignore_index=True)
save_cards_df_to_json(self.cards_df, json_file_title)
self.question_answer_pairs = []
self.checkbox_vars = []
self.question_entries = []
self.answer_entries = []
self.clear_widgets()
self.create_widgets()
class ExplorationDataEditor:
def __init__(self, master, exploration_data, knowledgeGraph, cards_df):
self.exploration_data = exploration_data
self.master = master
self.knowledgeGraph = knowledgeGraph
self.cards_df = cards_df
self.master.title("Exploration Data Editor")
self.window_width = 500
self.master.geometry(str(self.window_width)+"x"+str(self.window_width))
# Master info
row_now = 0
tk.Label(self.master, text="Topic:").grid(row=0, column=0)
self.topic_entry = tk.Entry(self.master)
self.topic_entry.grid(row=row_now, column=1)
self.topic_entry.insert(0, self.exploration_data.topic)
row_now += 1
tk.Label(self.master, text="Goal command:").grid(row=row_now, column=0)
self.goal_command_entry = tk.Entry(self.master)
self.goal_command_entry.grid(row=row_now, column=1)
self.goal_command_entry.insert(0, self.exploration_data.goal_command)
row_now += 1
tk.Label(self.master, text="Num random card clusters:").grid(row=row_now, column=0)
self.num_rand_clusters_entry = tk.Entry(self.master)
self.num_rand_clusters_entry.grid(row=row_now, column=1)
self.num_rand_clusters_entry.insert(0, self.exploration_data.num_rand_clusters)
row_now += 1
tk.Label(self.master, text="Num related cards shown with random clusters:").grid(row=row_now, column=0)
self.num_related_cards_entry = tk.Entry(self.master)
self.num_related_cards_entry.grid(row=row_now, column=1)
self.num_related_cards_entry.insert(0, self.exploration_data.num_related_cards)
row_now += 1
tk.Label(self.master, text="Num related cards shown from graph:").grid(row=row_now, column=0)
self.num_related_cards_in_graph_entry = tk.Entry(self.master)
self.num_related_cards_in_graph_entry.grid(row=row_now, column=1)
self.num_related_cards_in_graph_entry.insert(0, self.exploration_data.num_related_cards_in_graph)
row_now += 1
tk.Label(self.master, text="Num questions to generate per query:").grid(row=row_now, column=0)
self.num_questions_generate_entry = tk.Entry(self.master)
self.num_questions_generate_entry.grid(row=row_now, column=1)
self.num_questions_generate_entry.insert(0, self.exploration_data.num_questions_generate)
# Save button
row_now += 1
self.save_button = tk.Button(self.master, text="Save overall info", command=self.save_data)
self.save_button.grid(row=row_now, columnspan=2)
# Query button
row_now += 1
self.new_questions_button = tk.Button(self.master, text="Generate new questions", command=self.generate_new_questions)
self.new_questions_button.grid(row=row_now, columnspan=2)
# Query button
row_now += 1
self.situation_in_graph_button = tk.Button(self.master, text="Gather related questions from graph", command=self.update_related_questions)
self.situation_in_graph_button.grid(row=row_now, columnspan=2)
# Answer button
row_now += 1
self.answer_button = tk.Button(self.master, text="Answer new questions", command=self.answer_new_questions)
self.answer_button.grid(row=row_now, columnspan=2)
# Print button
row_now += 1
self.answer_button = tk.Button(self.master, text="Print related questions and answers", command=self.print_related_questions_and_answers)
self.answer_button.grid(row=row_now, columnspan=2)
# New question list window
self.new_question_window = tk.Toplevel(self.master)
self.new_question_window.geometry(str(self.window_width)+"x"+str(self.window_width))
self.new_question_window.title("New Question List Editor")
self.update_button = tk.Button(self.new_question_window, text="Update Questions", command=self.update_new_questions)
self.update_button.grid(row=0, column=1, columnspan=1)
self.update_button_toggle = tk.Button(self.new_question_window, text="Tog.", command=self.update_new_questions_toggle_all)
self.update_button_toggle.grid(row=0, column=0, columnspan=1)
tk.Label(self.new_question_window, text="Keep?").grid(row=1, column=0)
tk.Label(self.new_question_window, text="New questions to answer").grid(row=1, column=1)
self.question_vars = []
for i, question in enumerate(self.exploration_data.new_question_list):
question_var = tk.BooleanVar()
question_var.set(True)
self.question_vars.append(question_var)
question_checkbutton = tk.Checkbutton(self.new_question_window, variable=question_var)
question_checkbutton.grid(row=i+2, column=0)
question_label = tk.Label(self.new_question_window, text=question, wraplength=self.window_width-60,
anchor="nw", justify="left")
question_label.grid(row=i+2, column=1, sticky='w')
# Related question list window
self.related_question_window = tk.Toplevel(self.master)
self.related_question_window.geometry(str(self.window_width)+"x"+str(self.window_width))
self.related_question_window.title("Related Questions from Graph")
# QA pairs window
self.qa_edit_window = QAEditApp(self.master, self.knowledgeGraph, self.cards_df)
def save_data(self):
self.exploration_data.topic = self.topic_entry.get()
self.exploration_data.goal_command = self.goal_command_entry.get()
self.exploration_data.num_rand_clusters = int(self.num_rand_clusters_entry.get())
self.exploration_data.num_related_cards = int(self.num_related_cards_entry.get())
self.exploration_data.num_related_cards_in_graph = int(self.num_related_cards_in_graph_entry.get())
self.exploration_data.num_questions_generate = int(self.num_questions_generate_entry.get())
self.redisplay_new_questions()
self.redisplay_related_questions()
print("Resaved main info")
def update_new_questions(self):
updated_new_question_list = []
for i, question_var in enumerate(self.question_vars):
if question_var.get():
updated_new_question_list.append(self.exploration_data.new_question_list[i])
self.exploration_data.new_question_list = updated_new_question_list
self.redisplay_new_questions()
def update_new_questions_toggle_all(self):
if len(self.question_vars) == 0:
return
toggle_to = not self.question_vars[0].get()
for checkbox_var in self.question_vars:
checkbox_var.set(toggle_to)
def redisplay_new_questions(self):
# Refresh the question list display
for widget in self.new_question_window.grid_slaves():
if int(widget.grid_info()["row"]) >= 2:
widget.grid_forget()
self.question_vars = []
for i, question in enumerate(self.exploration_data.new_question_list):
question_var = tk.BooleanVar()
question_var.set(True)
self.question_vars.append(question_var)
question_checkbutton = tk.Checkbutton(self.new_question_window, variable=question_var)
question_checkbutton.grid(row=i+2, column=0)
question_label = tk.Label(self.new_question_window, text=question, wraplength=self.window_width-50,
anchor="nw", justify="left")
question_label.grid(row=i+2, column=1, sticky='w')
def generate_new_questions(self):
print("Generating new questions based on random card clusters, related cards in graph, and existing new questions")
self.save_data()
self.update_new_questions()
generated_new_question_list = get_suggested_further_questions(self.knowledgeGraph,
topic=self.exploration_data.topic,
question_subject_list_in_graph=self.exploration_data.question_subject_list_in_graph,
target_question_list=self.exploration_data.new_question_list,
goal_command = self.exploration_data.goal_command,
num_random_clusters_of_cards_to_show=self.exploration_data.num_rand_clusters,
num_random_related_cards_to_show=self.exploration_data.num_related_cards,
num_related_cards_in_graph_to_show=self.exploration_data.num_related_cards_in_graph,
num_questions_to_generate=self.exploration_data.num_questions_generate,
increasing_abstraction=True,
verbose=False,
extra_verbose=False)
self.exploration_data.new_question_list = self.exploration_data.new_question_list + generated_new_question_list
self.redisplay_new_questions()
def update_related_questions(self):
self.save_data()
self.update_new_questions()
display_number=20
sample_questions = sample_question_list(self.exploration_data.new_question_list)
question_subject_list = get_refined_question_subject_list_in_graph(self.knowledgeGraph, sample_questions)
related_cardIDs = get_related_cardIDs_from_subject_list(question_subject_list, self.knowledgeGraph,
num_cards_to_show=display_number)
related_question_list = list(reversed([self.knowledgeGraph.cards[cardID].question for cardID in related_cardIDs]))
# Reversing puts most important at beginning
self.exploration_data.question_subject_list_in_graph = question_subject_list
self.exploration_data.question_list_in_graph = related_question_list
self.redisplay_related_questions()
def redisplay_related_questions(self):
for widget in self.related_question_window.grid_slaves():
widget.grid_forget()
for i, question in enumerate(self.exploration_data.question_list_in_graph):
if i+1 <= self.exploration_data.num_related_cards_in_graph:
str_show = str(i+1) + ". " + question
row_show = i
else:
str_show = "xxx - " + str(i+1) + ". " + question
row_show = i+1
question_label = tk.Label(self.related_question_window, text=str_show, wraplength=self.window_width,
anchor="nw", justify="left")
question_label.grid(row=row_show, column=1, sticky='w')
question_label = tk.Label(self.related_question_window, text='----------------- Below here not displayed -----------------',
wraplength=self.window_width,
anchor="nw", justify="left")
question_label.grid(row=self.exploration_data.num_related_cards_in_graph, column=1, sticky='w')
def answer_new_questions(self):
print("Answering new questions")
self.save_data()
self.update_new_questions()
# Generate answers
question_subject_list = self.exploration_data.question_subject_list_in_graph
question_list = self.exploration_data.new_question_list
question_answer_pairs = get_answers_to_questions(self.knowledgeGraph, question_list, question_subject_list)
self.qa_edit_window.question_answer_pairs = question_answer_pairs
self.qa_edit_window.clear_widgets()
self.qa_edit_window.create_widgets()
def print_related_questions_and_answers(self):
question_subject_list = self.exploration_data.question_subject_list_in_graph
related_cardIDs = get_related_cardIDs_from_subject_list(question_subject_list, self.knowledgeGraph,
num_cards_to_show=self.exploration_data.num_related_cards_in_graph)
related_question_list = list(reversed([self.knowledgeGraph.cards[cardID].question for cardID in related_cardIDs]))
related_answer_list = list(reversed([self.knowledgeGraph.cards[cardID].answer for cardID in related_cardIDs]))
q_and_a = "".join(["Question: {" + q + "}\n" + "Answer: {" + a + "}\n"
for q, a in zip(related_question_list, related_answer_list)])
print(q_and_a)
def launch_explorer(knowledgeGraph, cards_df, exploration_data=ExplorationData()):
root = tk.Tk()
editor = ExplorationDataEditor(root, exploration_data, knowledgeGraph, cards_df)
root.mainloop()
return exploration_data