forked from tomhartke/knowledge-graph-from-GPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
knowledge_graph.py
862 lines (693 loc) · 45.2 KB
/
knowledge_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
import os
import openai
import re
import json
import numpy as np
import pandas as pd
from collections import Counter
from typing import Any, Optional, Tuple, Dict, List, NamedTuple, Set
import scipy
import time
from pprint import pprint as pprint
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['figure.dpi'] = 100
from basic_utils import *
# A few useful operations on embedding vectors (dictionaries of values
trimming_and_intersection_tolerance_amount = 1e-10
def emb_vec_inner_product(emb_vec1, emb_vec2):
"""
This is the key metric for the overlap of two embedding vectors
"""
# loop over all keys in one vector.
# Get product of value in both vectors. If one is non-existent, then set it to 0.
# This means we only have to loop over one vector
prod_sum = 0.0
if len(emb_vec1.keys()) < len(emb_vec2.keys()):
for key, val in emb_vec1.items():
val_other = emb_vec2.get(key, 0.0)
if val * val_other > 0 :
prod_sum += np.sqrt(val * val_other)
else:
for key, val in emb_vec2.items():
val_other = emb_vec1.get(key, 0.0)
if val * val_other > 0 :
prod_sum += np.sqrt(val * val_other)
return prod_sum
def trim_embedding_vector(emb_vec,
embedding_vector_tolerance_fraction=trimming_and_intersection_tolerance_amount):
"""
Returns a shorter vector, which contains terms which sum to
1 - embedding_vector_tolerance_fraction. So most of them.
"""
emb_vec_vals = np.array(list(emb_vec.values()))
emb_vec_vals.sort() # from low to high
emb_vec_cumulative_threshold = np.sum(emb_vec_vals) * embedding_vector_tolerance_fraction
emb_vec_vals_sorted_cumsum = np.cumsum(emb_vec_vals)
num_below_threshold = len(np.where(emb_vec_vals_sorted_cumsum < emb_vec_cumulative_threshold)[0])
if num_below_threshold > 0:
threshold_val = emb_vec_vals[num_below_threshold - 1]
# need to be strictly greater than this to be included in the trimmed vector
else:
threshold_val = 0.0
emb_vec_trimmed = {k: v for k, v in emb_vec.items() if v > threshold_val}
return emb_vec_trimmed
def emb_vec_weighted_union_of_nodes(node_title_list, knowledgeGraph):
"""
Gets an embedding vector which is a weighted sum of embedding vectors for the nodes.
The intention is to find an embedding which characterizes the unique aspects of this set of nodes.
That is it emphasizes the less common nodes more.
Have to pass in knowledge graph as argument because union needs to know about
meta data of nodes, in the knowledge graph
There are two types of weighting used here.
1. First, the relative weighting of each node is adjusted since
we don't want to use concepts associated with many other things. Want to use unique things.
2. Second, after summing the resulting embedding vector, from all the concepts in the card.
When a node is highly referenced, we normalize its entry by the total amount of embedding pointing at it
to get the fraction of all embedding pointing at this concept from unique aspects of the card
This once again makes the card embedding sensitive mostly to unique values
"""
# Gather list of all keys from all the component nodes, to use in the resulting embedding
node_title_set = set()
for node_title in node_title_list:
node = knowledgeGraph.nodes[node_title]
node_title_set.update(set(node.embedding_vector.keys()))
# Initialize emb vec to 0 for all keys
union_emb_vec_prenorm = {neighbor_concept: 0.0 for neighbor_concept in node_title_set}
# loop through embedding vectors of each of the nodes and add weighted value to existing value
for node_index, node_title in enumerate(node_title_list):
# note we use the list here, so if duplicates exist, they are intentionally counted more
node = knowledgeGraph.nodes[node_title]
effective_node_size_correction = 1.0 / (1.0 + node.sum_of_embeddings_to_node)
for neighbor_concept, emb_value in node.embedding_vector.items():
union_emb_vec_prenorm[neighbor_concept] += emb_value * effective_node_size_correction
# Now loop through and divide each individual embedding item by the total number of references to it
union_emb_vec = {k: val_prenorm / (1.0 + knowledgeGraph.nodes[k].sum_of_embeddings_to_node)
for k, val_prenorm in union_emb_vec_prenorm.items()}
# Finally, normalize the embedding vector to sum to 1
# We do this because we want a similarity metric that isn't biased toward sums of many nodes.
total_emb_vec = np.sum(list(union_emb_vec.values()))
union_emb_vec = {k: v / total_emb_vec for k, v in union_emb_vec.items()}
return union_emb_vec
def emb_vec_intersection_with_threshold(emb_vec_list, knowledgeGraph, intersection_threshold_amount=1e-10):
"""
Takes a set of embedding vectors, and gets the geometric average of their values for each key,
It sets values to a lower threshold if they are not present in the vector.
If a set of vectors have no intersection, it returns a uniform distribution over all keys
Someday might want to update this to return the background distribution, rather than uniform.
At the end, it normalizes the resulting vector to sum to 1.
This is like averaging the logit values if we think of the embedding vector as output by a softmax dist.
"""
def get_emb_vec_lower_threshold_value(emb_vec,
embedding_vector_tolerance_fraction=trimming_and_intersection_tolerance_amount):
"""
Returns the value in the vector where the cumulative sum of elements larger than this equals
1 - embedding_vector_tolerance_fraction. So most of them.
"""
emb_vec_vals = np.array(list(emb_vec.values()))
emb_vec_vals.sort() # from low to high
emb_vec_cumulative_threshold = np.sum(emb_vec_vals) * embedding_vector_tolerance_fraction
emb_vec_vals_sorted_cumsum = np.cumsum(emb_vec_vals)
num_below_threshold = len(np.where(emb_vec_vals_sorted_cumsum < emb_vec_cumulative_threshold)[0])
if num_below_threshold > 0:
threshold_val = emb_vec_vals[num_below_threshold - 1]
else:
threshold_val = 0.0
# If value happens to be 0, then move up through vector until it's nonzero
while threshold_val == 0.0:
num_below_threshold += 1
threshold_val = emb_vec_vals[num_below_threshold]
return threshold_val
def get_all_keys_over_emb_vec_list(emb_vec_list):
all_keys = set(emb_vec_list[0].keys()) # just to get started
for emb_vec in emb_vec_list:
all_keys = all_keys.union(set(emb_vec.keys()))
return all_keys
def get_geometric_avg_over_emb_vec_list_specific_key(emb_vec_list, lower_threshold_list, k):
# Going to take average of logs instead of 1/nth root of product, to encourage numerical stability
# then exponentiate the average of logs
num_emb_vecs = float(len(emb_vec_list))
avg_of_logs = 0.0
for ind_of_vec, emb_vec in enumerate(emb_vec_list):
# Use the lower threshold value of this vector as the default
avg_of_logs += np.log(emb_vec.get(k, lower_threshold_list[ind_of_vec])) / num_emb_vecs
return np.exp(avg_of_logs)
# Get specific keys
all_keys = get_all_keys_over_emb_vec_list(emb_vec_list)
# Get lower threshold value for each embedding vector, to be used as default if key is not contained in vector
lower_threshold_list = [get_emb_vec_lower_threshold_value(emb_vec,
embedding_vector_tolerance_fraction=intersection_threshold_amount
) for emb_vec in emb_vec_list]
# Take product of values
emb_vec_intersection = {k: get_geometric_avg_over_emb_vec_list_specific_key(emb_vec_list, lower_threshold_list,
k) for k in all_keys}
# Now renormalize it to sum to 1, if it has nonzero values
total_emb_vec = np.sum(list(emb_vec_intersection.values()))
if total_emb_vec != 0.0:
emb_vec_intersection = {k: v / total_emb_vec for k, v in emb_vec_intersection.items()}
return emb_vec_intersection
def get_emb_vec_intersection_over_concepts(concept_list, knowledgeGraph):
emb_vec_list = []
for _ind, concept in enumerate(reversed(concept_list)):
sig_vec = knowledgeGraph.nodes[concept].significance_vector
emb_vec = knowledgeGraph.nodes[concept].embedding_vector
emb_vec_list.append(emb_vec)
emb_vec_int = emb_vec_intersection_with_threshold(emb_vec_list, knowledgeGraph)
return emb_vec_int
def get_emb_vec_relative_abstraction_1to2(emb_vec1, emb_vec2, knowledgeGraph,
heavy_trim_tolerance_fraction=1e-1):
# Get very trimmed embedding vectors
trimmed_emb_vec1 = trim_embedding_vector(emb_vec1,
embedding_vector_tolerance_fraction=heavy_trim_tolerance_fraction)
trimmed_emb_vec2 = trim_embedding_vector(emb_vec2,
embedding_vector_tolerance_fraction=heavy_trim_tolerance_fraction)
# loop through and get relative abstraction based on node-to-node abstraction
# weight each cross pair by the product of embedding vector values (then normalized by total)
rel_abs_with_weights_sum = 0.0
weights_sum = 0.0
for node1_title, node1_emb in trimmed_emb_vec1.items():
for node2_title, node2_emb in trimmed_emb_vec2.items():
rel_abs_dict_1to2 = knowledgeGraph.nodes[node1_title].neighbors_relative_abstraction
rel_abs = 0.0
if node2_title in rel_abs_dict_1to2.keys():
# This is the abstraction of 2 relative to 1
rel_abs = rel_abs_dict_1to2[node2_title]
rel_abs_with_weights_sum += rel_abs * node1_emb * node2_emb
weights_sum += node1_emb * node2_emb
rel_abs = rel_abs_with_weights_sum / weights_sum
return rel_abs
class CardConceptHierarchy:
"""
A datastructure for listing the major ideas corresponding to a card, both at higher and lower abstraction levels.
"""
def __init__(self, topic="", topic_description=""):
# The first key is an integer, the abstraction level. 0 is base. 1 is more abstract, -1 is less abstract
# second dictionary is the titles and descriptions of concepts
self.abstraction_groups: Dict[int: Dict[str, str]] = {0 : {str(topic): str(topic_description)}}
def set_concept(self, relative_abstraction, title, description):
self.abstraction_groups.setdefault(relative_abstraction, {}) # creates entry if it does not exist
self.abstraction_groups[relative_abstraction][str(title)] = str(description)
def get_concepts_list(self): # Gets unique concepts, ordered by abstraction
ordered_concepts_nonunique = [concept for abs_level, concept_dict in reversed(sorted(self.abstraction_groups.items()))
for concept, desc in concept_dict.items() ]
unique_inds = np.unique(ordered_concepts_nonunique, return_index=True)[1]
return [ordered_concepts_nonunique[_unique_ind] for _unique_ind in sorted(unique_inds)]
def get_abstractions_dict(self): # returns dictionary containing unique concepts, and abstracton level
# If concept shows up at multiple abstraction levels, then average them together.
unique_concepts = self.get_concepts_list()
abs_level_samples = {concept: [] for concept in unique_concepts}
for abs_level, concept_dict in reversed(sorted(self.abstraction_groups.items())):
for concept, desc in concept_dict.items():
abs_level_samples[concept].append(abs_level)
abstractions_dict = {k: np.average(np.array(v)) for k, v in abs_level_samples.items()}
return abstractions_dict
def get_abstractions_dict_as_JSON_str(self):
def list_to_doublequotes(_list):
return '["' + '", "'.join(_list) + '"]'
_list = ['"'+str(abs_level)+'" : '+ list_to_doublequotes(list(concept_dict.keys()))
for abs_level, concept_dict in sorted(self.abstraction_groups.items())]
return "{" + ', '.join(_list) + "}"
class Card:
"""
Each card is a question answer pair.
"""
def __init__(self, cardID, topic, question, answer, key_ideas, cardConceptHierarchy):
self.cardID = cardID # a unique integer given to each card
self.topic: str = topic # effectively the label of the card
self.question: str = question
self.answer: str = answer
self.key_ideas: str = key_ideas
self.concepts: CardConceptHierarchy = cardConceptHierarchy
# self.retention: float = 0.0 # a number from 0 to 1 giving the estimated correctness if asked now
# self.history: List[[float, float]] = [] # list of past times, and accuracy at that time, of testing
self.embedding_vector: Dict[str: float] = {}
self.embedding_vector_trimmed: Dict[str: float] = {} # trimmed to not be as long of a dictionary if values are tiny
def get_abstraction_from_1_to_2(self, concept1, concept2):
abstractions_dict = self.concepts.get_abstractions_dict()
return float(abstractions_dict[concept2] - abstractions_dict[concept1])
def display(self, verbose=False):
if not verbose:
l1 = "Topic: " + self.topic
l2 = "Question: " + self.question + ''
l3 = "Answer: " + self.answer + ''
print("\n".join([l1,l2,l3]) + "\n")
if verbose:
l1 = "Topic: " + self.topic
l2 = "Question: " + self.question + ''
l3 = "Answer: " + self.answer + ''
l4 = "Key ideas:\n" + self.key_ideas
print("\n".join([l1, l2, l3, l4]) + "\n")
def update_embedding_vector(self, knowledgeGraph):
"""
Embedding vector for card is a weighted sum of embedding vectors for the concepts in the card
Have to pass in knowledge graph as argument because card needs to know about nodes, in the knowledge graph
"""
# Card concept list
card_concepts_list = self.concepts.get_concepts_list()
card_emb_vec = emb_vec_weighted_union_of_nodes(card_concepts_list, knowledgeGraph)
self.embedding_vector = card_emb_vec # update stored value, then return it
self.embedding_vector_trimmed = trim_embedding_vector(card_emb_vec)
return card_emb_vec
class Node:
"""
Each node is a concept.
Main attributes are:
title : title of node. This is the ID, and the concept of the node. Used for searching
cards : list of the cardID of cards that touch this node
neighbors : a dictionary of neighboring nodes, with the list of cardIDs of cards connecting them
neighbors_relative_abstraction : a dictionary of neighboring nodes, with the list of the
relative abstraction from node to neighbor (higher means neighbor is more abstract).
neighbors_connection_strength : a dictionary of neighboring nodes, with the connection strength from this
node to that node, from the perspective of this node (number of cards connecting to that node, out of total cards)
"""
def __init__(self, title: str):
self.title = title
self.cards: Set[int] = set() # contains references to card IDs that touch this node
self.neighbors: Set[str] = set()
self.neighbors_card_connections: Dict[str: Set[int]] = {} # contains references to neighbor nodes, and the set of IDs of cards that connect them
self.neighbors_connection_count: Dict[str: int] = {}
self.neighbors_connection_strength: Dict[str: float] = {}
self.neighbors_reverse_connection_strength: Dict[str: float] = {} # from the neighbor's perspective
self.neighbors_relative_abstraction: Dict[str: float] = {}
self.significance_vector: Dict[str: float] = {} # vector of probabilities from 0 to 1 that two concepts are associated
self.sum_of_significances_to_node: float = 0.0
self.sum_of_significances_from_node: float = 0.0
self.raw_embedding_vector: Dict[str: float] = {} # vector of association strengths from significance and connection
self.sum_of_raw_embeddings_to_node: float = 0.0
self.embedding_vector: Dict[str: float] = {} # vector of network-wise association strengths
self.embedding_vector_trimmed: Dict[str: float] = {} # trimmed to not be as long of a dictionary if values are tiny
self.sum_of_embeddings_to_node: float = 0.0 # sum of all other node embedding vectors values of this node
def display_raw_metrics(self, num_connections_required_for_display=1):
strength_bar_size_display = 20 # width in number of characters
rel_abs_bar_size_display = 20
display_title = ("-------------------------------------------------------------------------\n"+
"Relative Abstracton Connection Strength Rev. Conn. Strength Concept\n"+
"-------------------------------------------------------------------------")
sorted_relative_abstraction = dict(reversed(sorted(self.neighbors_relative_abstraction.items(), key=lambda item: item[1])))
rel_abs_scale = np.max(np.abs(np.array(list(sorted_relative_abstraction.values())))) + 1e-13 # to prevent 0 scale
print("Node:", self.title)
print(" {} cards".format(len(self.cards)))
print(" {} card threshold for display".format(num_connections_required_for_display))
print(display_title)
for neighbor_node_title, rel_abs in sorted_relative_abstraction.items():
connection_strength = self.neighbors_connection_strength[neighbor_node_title]
reverse_connection_strength = self.neighbors_reverse_connection_strength[neighbor_node_title]
connection_count = self.neighbors_connection_count[neighbor_node_title]
rel_abs_display_scale = rel_abs/rel_abs_scale
if connection_strength >= min(self.neighbors_connection_strength.values())*num_connections_required_for_display:
strength_bar = get_visual_display_bar_positive(connection_strength, strength_bar_size_display)
reverse_strength_bar = get_visual_display_bar_positive(reverse_connection_strength, strength_bar_size_display)
rel_abs_bar = get_visual_display_bar_symmetric(rel_abs_display_scale, rel_abs_bar_size_display)
print(rel_abs_bar, strength_bar, reverse_strength_bar, neighbor_node_title, ' ', connection_count)
def get_neighbor_titles_with_similar_abstraction(self, abstraction_window_plus_minus=0.5):
n_node_title_list = [n_node_title for n_node_title in self.neighbors
if np.abs(self.neighbors_relative_abstraction[n_node_title]) < abstraction_window_plus_minus]
return n_node_title_list
def get_sorted_neighbor_titles_by_abstraction(self):
sorted_neighbor_titles = [str(k) for [k, v] in list(sorted(self.neighbors_relative_abstraction.items(),
key=lambda item: item[1]))]
return np.array(sorted_neighbor_titles)
def dict_to_array(self, _dict):
sorted_neighbor_titles = self.get_sorted_neighbor_titles_by_abstraction()
return np.array([_dict[title] for title in sorted_neighbor_titles])
def _get_predicted_connection_strength(self, abstraction_window_plus_minus_for_avg=1.501):
"""
This defines a window around each unique abstraction value, and calculates the average connection strength
and number of samples in that window
Returns two dictionaries for all datapoints (neighbors) contiaining the value, and sample count
"""
def get_avg_connection_strength_in_abstraction_window(node, _low, _high):
con_samples = [node.neighbors_connection_strength[_title] for _title in node.neighbors
if (node.neighbors_relative_abstraction[_title] <= _high and
node.neighbors_relative_abstraction[_title] >= _low)
]
num_con_samples = len(con_samples)
avg_con_val = np.average(np.array(con_samples))
return avg_con_val, num_con_samples
def get_avg_connection_strength_near_abstraction_value(node, abs_val):
abs_window = [abs_val - abstraction_window_plus_minus_for_avg, abs_val + abstraction_window_plus_minus_for_avg]
avg_connection_val, num_samples = get_avg_connection_strength_in_abstraction_window(node, abs_window[0], abs_window[1])
return [avg_connection_val, num_samples]
def get_avg_connection_strength_vs_unique_abstractions(node, unique_abstraction_vals):
avg_connection_vals_and_num_samples = np.array([get_avg_connection_strength_near_abstraction_value(node, abs_val)
for abs_val in unique_abstraction_vals])
avg_connection_vals = avg_connection_vals_and_num_samples[:,0]
num_sample_cards = len(node.cards) * avg_connection_vals_and_num_samples[:,1]
return avg_connection_vals, num_sample_cards
node = self
unique_abstraction_vals = sorted(list(set(node.neighbors_relative_abstraction.values())))
avg_connection_vals, num_sample_cards = get_avg_connection_strength_vs_unique_abstractions(node, unique_abstraction_vals)
# Note, num_sample_cards is the number of total cards involved in the averaging
# so it's the number of words averaged together, times the number of cards in the node
if len(unique_abstraction_vals) > 1:
# get interpolations
avg_connection_vals_interp = scipy.interpolate.interp1d(unique_abstraction_vals, avg_connection_vals, kind="linear")
num_sample_cards_interp = scipy.interpolate.interp1d(unique_abstraction_vals, num_sample_cards, kind="linear")
# Evaluate for all data points
pred_val_dict = {_title: avg_connection_vals_interp(node.neighbors_relative_abstraction[_title])
for _title in node.neighbors}
num_samples_dict = {_title: num_sample_cards_interp(node.neighbors_relative_abstraction[_title])
for _title in node.neighbors}
else: # there is just one value
pred_val_dict = {_title: avg_connection_vals[0] for _title in node.neighbors}
num_samples_dict = {_title: num_sample_cards[0] for _title in node.neighbors}
return pred_val_dict, num_samples_dict
def _calculate_LCB_association_significance(self, con_str, con_str_num_cards, pred_con_str,
pred_con_str_num_cards, lower_bound_epsilon=0.025):
# Gets lower confidence bound for whether these concepts are significantly associated
def get_beta_LCB(fraction_observed, n_measurements, lower_bound_epsilon):
# beta.ppf is the inverse of the cdf distribution
# it gives the value of the input to the beta distribution with these parameters where
# the probability of fraction_observed being lower than this is lower_bound_epsilon
prior_alpha = 1.0
prior_beta = 1.0
n_observed = fraction_observed * n_measurements
lower_bound_value = scipy.stats.beta.ppf(lower_bound_epsilon, prior_alpha + n_observed,
prior_beta + n_measurements - n_observed)
return lower_bound_value
def get_beta_cdf(test_value, n_measurements, pred_value):
prior_alpha = 1.0
prior_beta = 1.0
pred_n_observed = pred_value * n_measurements
cdf_probability = scipy.stats.beta.cdf(test_value, prior_alpha + pred_n_observed,
prior_beta + n_measurements - pred_n_observed)
return cdf_probability
def get_probability_score(connection_strength, n_cards_for_connection, pred_connection_strength,
n_cards_for_prediction, lower_bound_epsilon=0.025):
lower_bound_value = get_beta_LCB(connection_strength, n_cards_for_connection, lower_bound_epsilon)
cdf_probability = get_beta_cdf(lower_bound_value, n_cards_for_prediction, pred_connection_strength)
return cdf_probability
prob_score = get_probability_score(con_str, con_str_num_cards, pred_con_str, pred_con_str_num_cards, lower_bound_epsilon)
return prob_score
def update_significance_vector(self, abstraction_window_plus_minus_for_avg=1.51,
lower_bound_epsilon=0.025):
"""
Gets a detailed metric for the connection strength from this node to others.
This metric is based on the lower confidence bound for association strength.
Returns a dictionary with this score
Does not include self in dictionary.
"""
window_pm = abstraction_window_plus_minus_for_avg
num_cards = len(self.cards) # number of cards touching this node
predicted_con_str, num_sample_cards = self._get_predicted_connection_strength(window_pm)
con_str = self.neighbors_connection_strength
significance_vector = {_title: self._calculate_LCB_association_significance(con_str[_title], num_cards,
predicted_con_str[_title],
num_sample_cards[_title],
lower_bound_epsilon)
for _title in self.neighbors}
self.significance_vector = significance_vector # update stored value
self.sum_of_significances_from_node = np.sum(list(self.significance_vector.values()))
return None
def update_raw_embedding_vector(self, abstraction_window_plus_minus_for_avg=1.51,
lower_bound_epsilon=0.025):
self.update_significance_vector()
# Now use significance vector and number of shared edges to associate concepts
self.raw_embedding_vector = {k: v * self.significance_vector[k]
for k, v in self.neighbors_connection_strength.items()}
return self.raw_embedding_vector
class KnowledgeGraph:
"""
Will contain a dictionary of nodes of the graph, and a dictionary of cards in the graph which connect the nodes.
Initialization process is create card, then add it to graph, then add to nodes, then update nodes based on card properties
"""
def __init__(
self,
lower_bound_epsilon=0.05, # the significance level for determining if nodes are associated
):
self.nodes: Dict[str: Node ] = {}
self.cards: Dict[int: Card ] = {}
self.lower_bound_epsilon = lower_bound_epsilon
self.node_embedding_num_maximum_passes_through_network = 100
# Sets maximum number of times we'll loop through network when calculating node embedding
self.node_embedding_update_fraction_condition_for_node_embedding_convergence = 0.01
# smaller threshold means slower convergence but more accuracy
self.node_embedding_update_combination_power = 6
# higher power means change node embedding more slowly
# This leads to slower convergence, but better averaging over nodes
def _add_card(self, topic, question, answer, key_ideas, cardConceptHierarchy):
# initialize card
newCardID = 1 + max(list(self.cards.keys()) + [-1]) # get max value plus one
card = Card(newCardID, topic, question, answer, key_ideas, cardConceptHierarchy)
self.cards[newCardID] = card
self._update_node_parameters_when_adding_card(card)
node_titles_updated = set(card.concepts.get_concepts_list())
return node_titles_updated
def _update_node_parameters_when_adding_card(self, card):
"""
# Adds nodes if necessary.
Updates
node.cards set,
node.neighbors set of nodes,
node.neighbors_card_connections dictionary of cards to each node
node.neighbors_connection_count dictionary of number of cards connecting to each node
node.neighbors_connection_strength float of fraction of times mentioned together
node.neighbors_reverse_connection_strength float of reverse connection (from neighbors perspective)
"""
node_titles_to_update = list(set(card.concepts.get_concepts_list())) # remove duplicates
for node_title in node_titles_to_update:
node = self.nodes.setdefault(node_title, Node(node_title)) # creates node it if not existing yet
node.cards.add(card.cardID) # Update card set for this node to include current card
neighbor_node_titles_to_update = [title for title in node_titles_to_update
if title != node_title] # gather list of others only
for n_node_title in neighbor_node_titles_to_update:
node.neighbors.add(n_node_title)
# Update card connection set. Have to add default in case we never connected before
card_connections = node.neighbors_card_connections.setdefault(n_node_title, set())
card_connections.add(card.cardID)
node.neighbors_connection_count[n_node_title] = len(card_connections)
# For connection strength, we have to iterate over all neighbors of the node
for n_node_title in node.neighbors_card_connections.keys():
connection_strength = float(node.neighbors_connection_count[n_node_title])/len(node.cards)
node.neighbors_connection_strength[n_node_title] = connection_strength
# Finally update the stored reverse connection strengths (it's not a symmetric metric)
for node_title in node_titles_to_update:
node = self.nodes[node_title]
for n_node_title in node.neighbors:
n_node = self.nodes[n_node_title]
n_node_strength_to_node = n_node.neighbors_connection_strength[node_title]
node.neighbors_reverse_connection_strength[n_node_title] = n_node_strength_to_node
def _get_node_neighbor_rel_abstraction_over_card_list(self, cardIDList, concept1, concept2):
# This method is in the knowledge graph because it requires information from cards
relative_abstractions = [self.cards[_cardID].get_abstraction_from_1_to_2(concept1, concept2)
for _cardID in cardIDList]
return np.average(np.array(relative_abstractions))
def _recalculate_relative_abstraction(self, node_titles_to_update, verbose=False):
# Loop through updated nodes and recalculate relative abstraction
start_time = time.time()
for _ind, node_title in enumerate(node_titles_to_update):
if verbose:
if _ind % 200 == 0:
print(' Node number: ', _ind, ', Title: "{}" at time '.format(node_title),
np.round(time.time() - start_time,2))
node = self.nodes[node_title]
for n_node_title in node.neighbors:
# Update relative abstraction
card_connections = node.neighbors_card_connections[n_node_title]
rel_abs = self._get_node_neighbor_rel_abstraction_over_card_list(card_connections,
node_title, n_node_title)
node.neighbors_relative_abstraction[n_node_title] = rel_abs
def add_card_deck(self, card_deck, verbose=False):
# card_deck is a list of card meta data for input to add_card
# Add basic info of cards
node_titles_updated = set()
for card_data in card_deck:
node_titles_updated_this_card = self._add_card(*card_data)
node_titles_updated.update(node_titles_updated_this_card)
# Loop through updated nodes and recalculate relative abstraction
print("Recalculating relative abstraction") if verbose else None
self._recalculate_relative_abstraction(node_titles_updated, verbose=verbose)
# Update raw embedding vector for these nodes
print("Updating raw embedding vectors") if verbose else None
start_time = time.time()
for _ind, node_title in enumerate(node_titles_updated):
if verbose and _ind % 200 == 0:
print(' Node number: ', _ind, ', Title: "{}" at time '.format(node_title),
np.round(time.time() - start_time,2))
self.nodes[node_title].update_raw_embedding_vector(lower_bound_epsilon=self.lower_bound_epsilon)
# Update all counts of significances to each node. This should be fast, so do it over whole graph
for node in self.nodes.values():
node.sum_of_significances_to_node = 0.0
node.sum_of_raw_embeddings_to_node = 0.0
for k, v in node.significance_vector.items():
node.sum_of_significances_to_node += v
for k, v in node.raw_embedding_vector.items():
node.sum_of_raw_embeddings_to_node += v
return node_titles_updated
def update_all_node_embeddings(self,
allow_reusing_existing_node_embedding=True, # saves computation a ton
verbose=False,
):
"""
Get embedding vectors from raw embeddings
This effectively measures and builds the network connectivity based on global structure
Final embedding to neighbor gets increased if neighbors share many mutual neighbors
"""
num_maximum_passes_through_network = self.node_embedding_num_maximum_passes_through_network
update_fraction_condition_for_node_embedding_convergence = self.node_embedding_update_fraction_condition_for_node_embedding_convergence
update_combination_power = self.node_embedding_update_combination_power
# Use trimmed raw embedding vectors of other nodes for calculating overlap
# This speeds up computation by 10x roughly
raw_embedding_vectors_trimmed = {node_title: trim_embedding_vector(node.raw_embedding_vector)
for node_title, node in self.nodes.items()}
node_titles_and_sum_of_sigs = self.get_node_titles_and_sum_of_significances_to_node_decreasing_order()
if verbose:
print('Updating all node embeddings:')
start_time = time.time()
for _ind, (node_title, sum_of_sigs) in enumerate(node_titles_and_sum_of_sigs):
if verbose:
if _ind % 200 == 0 or time.time() - prev_time > 1.0:
print(' Node number: ', _ind, ', Title: "{}" at time '.format(node_title),
np.round(time.time() - start_time,2))
prev_time = time.time()
node = self.nodes[node_title]
# Get order to loop through neighbors
# Want to loop through by order of raw embedding in relation to this card, least embedding first.
ordering_dict = node.raw_embedding_vector
sort_inds = np.argsort(list(ordering_dict.values()))
sorted_neighbor_names = np.array(list(ordering_dict.keys()))[sort_inds]
# Initialize embedding vector
if len(node.embedding_vector) > 0 and allow_reusing_existing_node_embedding:
new_emb_vec = node.raw_embedding_vector.copy() # have to copy because we maybe introduced new elements
new_emb_vec.update(node.embedding_vector.copy()) # uses old embedding vector as default values
else:
new_emb_vec = node.raw_embedding_vector.copy() # to be filled
new_emb_vec_current_total = np.sum(list(new_emb_vec.values()))
# Keep track of vector running sum rather than recalculating inner product (which is slow)
# Loop through nodes and update embedding
# need to do multiple passes over all nodes to converge to a new node representation.
for pass_ind in range(num_maximum_passes_through_network):
total_update_this_pass = 0.0 # keep track how much we have updated, to check convergence
for n_node_title in sorted_neighbor_names:
n_node_raw_emb_vec_trimmed = raw_embedding_vectors_trimmed[n_node_title]
n_node_raw_emb_sum_to_n_node = self.nodes[n_node_title].sum_of_raw_embeddings_to_node
# Calculate normalized overlap (this is like the new target embedding)
overlap = min(1, emb_vec_inner_product(new_emb_vec, n_node_raw_emb_vec_trimmed) /
new_emb_vec_current_total)
# Want to rotate slowly to new overlap, so average strongly with previous value
overlap_reduced = ((overlap * new_emb_vec[n_node_title] ** (update_combination_power - 1))
** (1.0/ update_combination_power))
updated_value = overlap_reduced / (1.0 + n_node_raw_emb_sum_to_n_node)
# The denominator kills major concepts, since they're not very useful for embedding
# Update parameters
total_update_this_pass += np.abs(updated_value - new_emb_vec[n_node_title])
new_emb_vec_current_total += updated_value - new_emb_vec[n_node_title]
new_emb_vec[n_node_title] = updated_value
# Check for convergence and break if done
if ((total_update_this_pass / new_emb_vec_current_total)
< update_fraction_condition_for_node_embedding_convergence):
break
node.embedding_vector = new_emb_vec
node.embedding_vector_trimmed = trim_embedding_vector(new_emb_vec)
# Update the sum of embeddings to each node
for node in self.nodes.values():
node.sum_of_embeddings_to_node = 0.0
for k, v in node.embedding_vector.items():
node.sum_of_embeddings_to_node += v
def update_all_embeddings(self,
allow_reusing_existing_node_embedding=True, # saves computation a ton
verbose=False,
):
# Update all nodes
self.update_all_node_embeddings(allow_reusing_existing_node_embedding=allow_reusing_existing_node_embedding,
verbose=verbose)
# Update all cards
for card in self.cards.values():
card.update_embedding_vector(self)
def get_node_titles_and_sum_of_significances_to_node_decreasing_order(self):
node_titles_and_sum_of_significances_to_node = [(node.title, node.sum_of_significances_to_node) for node in self.nodes.values()]
sum_of_significances_to_node = [node.sum_of_significances_to_node for node in self.nodes.values()]
sum_of_significances_to_node_sorted_inds = np.flip(np.argsort(np.array(sum_of_significances_to_node)))
sorted_node_titles_and_sum_of_significances_to_node = np.array(node_titles_and_sum_of_significances_to_node)[sum_of_significances_to_node_sorted_inds]
return sorted_node_titles_and_sum_of_significances_to_node
def get_dict_of_emb_vec_inner_product_over_nodes(self, emb_vec, useTrimmed=True):
if useTrimmed:
overlap_dict = {node_title: emb_vec_inner_product(emb_vec, node.embedding_vector_trimmed)
for node_title, node in self.nodes.items()}
else:
overlap_dict = {node_title: emb_vec_inner_product(emb_vec, node.embedding_vector)
for node_title, node in self.nodes.items()}
return overlap_dict
def get_dict_of_emb_vec_inner_product_over_cards(self, emb_vec, useTrimmed=True):
if useTrimmed:
overlap_dict = {cardID: emb_vec_inner_product(emb_vec, card.embedding_vector_trimmed)
for cardID, card in self.cards.items()}
else:
overlap_dict = {cardID: emb_vec_inner_product(emb_vec, card.embedding_vector)
for cardID, card in self.cards.items()}
return overlap_dict
def display_object_overlaps(self, input_object):
# input_object should be a node or card
if isinstance(input_object, Node):
object_type = 'Node'
object_title = input_object.title
emb_vec = input_object.embedding_vector
elif isinstance(input_object, Card):
object_type = 'Card'
object_title = input_object.topic + " ID:" + str(input_object.cardID)
emb_vec = input_object.embedding_vector
else:
raise Exception("Trying to display an object that is not allowed")
overlap_dict_nodes = self.get_dict_of_emb_vec_inner_product_over_nodes(emb_vec)
overlap_dict_cards = self.get_dict_of_emb_vec_inner_product_over_cards(emb_vec)
sorted_node_titles, sorted_node_overlaps = get_dict_items_sorted_by_decreasing_value(overlap_dict_nodes)
sorted_cardIDs, sorted_card_overlaps = get_dict_items_sorted_by_decreasing_value(overlap_dict_cards)
def plot_overlaps_vs_names(xvals, yvals, xlabel, title, num_display):
fig, ax = plt.subplots(1, figsize=(12, 2))
ax.set_title(title)
ax.scatter(xvals[0:num_display], yvals[0:num_display], marker = 'o', color = 'blue', s=4, label='')
ax.set_xlabel(xlabel)
ax.set_ylabel('Overlap')
plt.xticks(rotation=85)
plt.ylim([0,1.05*np.max(yvals[0:num_display])])
plt.show()
def plot_overlaps_histograms(node_overlaps, card_overlaps, title, num_bins=40):
fig, ax = plt.subplots(1, 2, figsize=(8, 2))
ax[0].hist(node_overlaps, bins=num_bins)
ax[0].set_xlabel('Node overlap')
ax[0].set_ylabel('Counts')
ax[0].set_yscale('log')
ax[1].hist(card_overlaps, bins=num_bins)
ax[1].set_xlabel('Card overlap')
ax[1].set_ylabel('Counts')
ax[1].set_yscale('log')
ax[0].set_title(title)
plt.show()
title = 'Histogram of overlaps for ' + object_type + ' "'+ object_title + '"'
plot_overlaps_histograms(sorted_node_overlaps, sorted_card_overlaps, title)
# Visualize the results
num_display = 60
xvals = sorted_node_titles
yvals = sorted_node_overlaps
xlabel = 'Neighbor node title'
title = 'Node overlaps for ' + object_type + ' "'+ object_title + '"'
plot_overlaps_vs_names(xvals, yvals, xlabel, title, num_display)
# Visualize the results
num_display = 60
xvals = [self.cards[cardID].topic + ' ID:' + str(cardID) for cardID in sorted_cardIDs[0:num_display]]
yvals = sorted_card_overlaps
xlabel = 'Card topic and ID'
title = 'Card overlaps for ' + object_type + ' "'+ object_title + '"'
plot_overlaps_vs_names(xvals, yvals, xlabel, title, num_display)
def create_card_deck_from_dataframe_of_abstraction_groups(cards_df_abstraction_groups):
card_deck = []
# Add cards
print('Adding {} cards'.format(len(cards_df_abstraction_groups)))
for card_ind in range(len(cards_df_abstraction_groups)):
abstraction_groups = cards_df_abstraction_groups['Abstraction groups'].values[card_ind]
topic = abstraction_groups['0'][0] # Extracts abstraction level 0, then first element.
question = cards_df_abstraction_groups["Question"].values[card_ind]
answer = cards_df_abstraction_groups["Answer"].values[card_ind]
key_ideas = cards_df_abstraction_groups["Key ideas"].values[card_ind]
# construct card concept heirarchy
cardConceptHierarchy = CardConceptHierarchy(topic, "")
concept_lists = []
for k, v in abstraction_groups.items():
if k != '0':
concept_lists.append([list(v), int(k)])
# Now make concept hierarchy
for concept_list, level in concept_lists:
for concept in concept_list:
cardConceptHierarchy.set_concept(level, concept, "")
card_deck.append([topic, question, answer, key_ideas, cardConceptHierarchy])
return card_deck