-
Notifications
You must be signed in to change notification settings - Fork 14
/
polylinesimplify.m
61 lines (53 loc) · 1.6 KB
/
polylinesimplify.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
function [newnodes, len]=polylinesimplify(nodes, minangle)
%
% [newnodes, len]=polylinesimplify(nodes, minangle)
%
% Calculate a simplified polyline by removing nodes where two adjacent
% segment have an angle less than a specified limit
%
% author: Qianqian Fang (q.fang at neu.edu)
%
% input:
% node: an N x 3 array defining each vertex of the polyline in
% sequential order
% minangle:(optional) minimum segment angle in radian, if not given, use
% 0.75*pi
%
% output:
% newnodes: the updated node list; start/end will not be removed
% len: the length of each segment between the start and the end points
%
%
% -- this function is part of brain2mesh toolbox (http://mcx.space/brain2mesh)
% License: GPL v3 or later, see LICENSE.txt for details
%
if(nargin<2)
minangle=0.75*pi;
end
v=segvec(nodes(1:end-1,:), nodes(2:end,:));
ang=acos(max(min(sum(-v(1:end-1,:).*(v(2:end,:)),2),1),-1));
newnodes=nodes;
newv=v;
newang=ang;
idx=find(newang<minangle);
while(~isempty(idx))
newnodes(idx+1,:)=[];
newv(idx+1,:)=[];
newang(idx)=[];
idx=unique(idx-(0:(length(idx)-1))');
idx1=idx(idx<size(newnodes,1));
newv(idx1,:) =segvec(newnodes(idx1,:),newnodes(idx1+1,:));
idx1=idx(idx<size(newv,1));
newang(idx1) =acos(sum(-newv(idx1,:).*(newv(idx1+1,:)),2));
idx0=idx(idx>1);
newang(idx0-1)=acos(sum(-newv(idx0-1,:).*(newv(idx0,:)),2));
idx=find(newang<minangle);
end
if(nargout>1)
len=newnodes(1:end-1,:) - newnodes(2:end,:);
len=sqrt(sum(len.*len,2));
end
function v=segvec(n1, n2)
v=n2-n1;
normals=sqrt(sum(v.*v,2));
v=v./repmat(normals,1,size(v,2));