-
Notifications
You must be signed in to change notification settings - Fork 10
/
Ablation_Tests_MNIST.py
439 lines (406 loc) · 18.2 KB
/
Ablation_Tests_MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# -*- coding: utf-8 -*-
"""
Created on Dec 21 14:57:02 2019
@author: Learning Deep Kernels for Two-sample Test
@Implementation of MMD-D and baselines in our paper on MNIST dataset
BEFORE USING THIS CODE:
1. This code requires PyTorch 1.1.0, which can be found in
https://pytorch.org/get-started/previous-versions/ (CUDA version is 10.1).
2. This code also requires freqopttest repo (interpretable nonparametric two-sample test)
to implement ME and SCF tests, which can be installed by
pip install git+https://github.com/wittawatj/interpretable-test
3. Pickle is required to load fake MNIST datasets (generated by DCGAN), which can be installed by
pip install pickle-mixin
4. Numpy and Sklearn are also required. Users can install
Python via Anaconda (Python 3.7.3) to obtain both packages. Anaconda
can be found in https://www.anaconda.com/distribution/#download-section .
"""
import argparse
import os
import numpy as np
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch
import pickle
from utils_HD import MatConvert, Pdist2, MMDu, TST_MMD_adaptive_bandwidth, TST_MMD_u, MMDu_linear_kernel, TST_MMD_u_linear_kernel
# Setup seeds
os.makedirs("images", exist_ok=True)
np.random.seed(819)
torch.manual_seed(819)
torch.cuda.manual_seed(819)
torch.backends.cudnn.deterministic = True
is_cuda = True
# parameters setting
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=2000, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=100, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--n", type=int, default=200, help="number of samples in one set")
opt = parser.parse_args()
print(opt)
dtype = torch.float
device = torch.device("cuda:0")
cuda = True if torch.cuda.is_available() else False
N_per = 100 # permutation times
alpha = 0.05 # test threshold
N1 = opt.n # number of samples in one set
K = 10 # number of trails
N = 100 # number of test sets
N_f = 100.0 # number of test sets (float)
# Loss function
adversarial_loss = torch.nn.CrossEntropyLoss()
# Naming variables
ep_OPT = np.zeros([K])
s_OPT = np.zeros([K])
s0_OPT = np.zeros([K])
Results = np.zeros([4,K])
# Define the deep network for G+c and D+C
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, bn=True):
block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0)] #0.25
if bn:
block.append(nn.BatchNorm2d(out_filters, 0.8))
return block
self.model = nn.Sequential(
*discriminator_block(opt.channels, 16, bn=False),
*discriminator_block(16, 32),
*discriminator_block(32, 64),
*discriminator_block(64, 128),
)
# The height and width of downsampled image
ds_size = opt.img_size // 2 ** 4
self.adv_layer = nn.Sequential(
nn.Linear(128 * ds_size ** 2, 100),
nn.ReLU())
self.output_layer = nn.Sequential(
nn.Linear(100, 2),
nn.Softmax())
def forward(self, img):
out = self.model(img)
out = out.view(out.shape[0], -1)
fea = self.adv_layer(out)
validity = self.output_layer(fea)
return validity, fea # It is different with Discriminator defined in "Deep_Baselines_MNIST.py"
# Define the deep network for L+J and G+J
class Featurizer(nn.Module):
def __init__(self):
super(Featurizer, self).__init__()
def discriminator_block(in_filters, out_filters, bn=True):
block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0)] #0.25
if bn:
block.append(nn.BatchNorm2d(out_filters, 0.8))
return block
self.model = nn.Sequential(
*discriminator_block(opt.channels, 16, bn=False),
*discriminator_block(16, 32),
*discriminator_block(32, 64),
*discriminator_block(64, 128),
)
# The height and width of downsampled image
ds_size = opt.img_size // 2 ** 4
self.adv_layer = nn.Sequential(
nn.Linear(128 * ds_size ** 2, 100))
def forward(self, img):
out = self.model(img)
out = out.view(out.shape[0], -1)
feature = self.adv_layer(out)
return feature
# Configure data loader
os.makedirs("./data/mnist", exist_ok=True)
dataloader_FULL = torch.utils.data.DataLoader(
datasets.MNIST(
"./data/mnist",
train=True,
download=True,
transform=transforms.Compose(
[transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
),
),
batch_size=60000,
shuffle=True,
)
# Obtain real MNIST images
for i, (imgs, Labels) in enumerate(dataloader_FULL):
data_all = imgs
label_all = Labels
dataloader_FULL_te = torch.utils.data.DataLoader(
datasets.MNIST(
"./data/mnist",
train=False,
download=True,
transform=transforms.Compose(
[transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
),
),
batch_size=10000,
shuffle=True,
)
for i, (imgs, Labels) in enumerate(dataloader_FULL_te):
data_all_te = imgs
label_all_te = Labels
# Repeat experiments K times (K = 10) and report average test power (rejection rate)
for kk in range(K):
torch.manual_seed(kk * 19 + N1)
torch.cuda.manual_seed(kk * 19 + N1)
np.random.seed(seed=1102 * (kk + 10) + N1)
# Initialize deep networks for L+J and G+J (called featurizer), G+C and D+C (called discriminator)
featurizer = Featurizer()
discriminator = Discriminator()
featurizer_linear_kernel = Featurizer()
# Initialize parameters
epsilonOPT = torch.log(MatConvert(np.random.rand(1) * 10 ** (-10), device, dtype))
epsilonOPT.requires_grad = True
sigmaOPT = MatConvert(np.ones(1) * np.sqrt(2*32*32), device, dtype)
sigmaOPT.requires_grad = True
sigma0OPT = MatConvert(np.ones(1) * np.sqrt(0.005), device, dtype)
sigma0OPT.requires_grad = True
print(epsilonOPT.item())
if cuda:
featurizer.cuda()
discriminator.cuda()
featurizer_linear_kernel.cuda()
adversarial_loss.cuda()
# Collect real MNIST images
np.random.seed(seed=819 * (kk + 9) + N1)
train_data = []
ind_M_all = np.arange(4000)
ind_M_tr = np.random.choice(4000, N1, replace=False)
ind_M_te = np.delete(ind_M_all,ind_M_tr)
for i in ind_M_tr:
train_data.append([data_all[i], label_all[i]])
dataloader = torch.utils.data.DataLoader(
train_data,
batch_size=opt.batch_size,
shuffle=True,
)
# Collect fake MNIST images
Fake_MNIST = pickle.load(open('./Fake_MNIST_data_EP100_N10000.pckl', 'rb'))
ind_all = np.arange(4000)
ind_tr = np.random.choice(4000, N1, replace=False)
ind_te = np.delete(ind_all,ind_tr)
Fake_MNIST_tr = torch.from_numpy(Fake_MNIST[0][ind_tr])
Fake_MNIST_te = torch.from_numpy(Fake_MNIST[0][ind_te])
# REPLACE above 6 lines with
# Fake_MNIST_tr = data_all[ind_M_tr_all[N1:]]
# Fake_MNIST_te = data_all[ind_M_te]
# for validating type-I error
# Initialize optimizers
optimizer_F = torch.optim.Adam(list(featurizer.parameters()) + [epsilonOPT] + [sigmaOPT] + [sigma0OPT], lr=opt.lr)
optimizer_F_linear_kernel = torch.optim.Adam(list(featurizer_linear_kernel.parameters()), lr=opt.lr)
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr)
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
# -------------------------------------------------------
# Training L+J and G+J and deep networks of G+C and D+C
# -------------------------------------------------------
np.random.seed(seed=1102)
torch.manual_seed(1102)
torch.cuda.manual_seed(1102)
for epoch in range(opt.n_epochs):
for i, (imgs, _) in enumerate(dataloader):
if True:
ind = np.random.choice(N1, imgs.shape[0], replace=False)
Fake_imgs = Fake_MNIST_tr[ind]
# Adversarial ground truths
valid = Variable(Tensor(imgs.shape[0], 1).fill_(1.0), requires_grad=False)
fake = Variable(Tensor(imgs.shape[0], 1).fill_(0.0), requires_grad=False)
# Configure input
real_imgs = Variable(imgs.type(Tensor))
Fake_imgs = Variable(Fake_imgs.type(Tensor))
X = torch.cat([real_imgs, Fake_imgs], 0)
Y = torch.cat([valid, fake], 0).squeeze().long()
# -----------
# Train G+J
# -----------
optimizer_F.zero_grad()
modelu_output = featurizer(X)
ep = torch.exp(epsilonOPT) / (1 + torch.exp(epsilonOPT))
sigma = sigmaOPT ** 2
sigma0_u = sigma0OPT ** 2
TEMP = MMDu(modelu_output, imgs.shape[0], X.view(X.shape[0],-1), sigma, sigma0_u, ep, is_smooth=False)
mmd_value_temp = -1 * (TEMP[0])
mmd_std_temp = torch.sqrt(TEMP[1] + 10 ** (-8))
if mmd_std_temp.item() == 0:
print('error std!!')
if np.isnan(mmd_std_temp.item()):
print('error mmd!!')
STAT_u = torch.div(mmd_value_temp, mmd_std_temp)
STAT_u.backward()
optimizer_F.step()
# -----------
# Train L+J
# -----------
optimizer_F_linear_kernel.zero_grad()
modelu_output_linear = featurizer_linear_kernel(X)
TEMP_l = MMDu_linear_kernel(modelu_output_linear, imgs.shape[0])
mmd_value_temp_l = -1 * (TEMP_l[0])
mmd_std_temp_l = torch.sqrt(TEMP_l[1] + 10 ** (-8))
if mmd_std_temp_l.item() == 0:
print('error std!!')
if np.isnan(mmd_std_temp_l.item()):
print('error mmd!!')
STAT_u_l = torch.div(mmd_value_temp_l, mmd_std_temp_l)
STAT_u_l.backward()
optimizer_F_linear_kernel.step()
# ------------------------------------
# Train deep network for G+C and D+C
# ------------------------------------
optimizer_D.zero_grad()
loss_C = adversarial_loss(discriminator(X)[0], Y)
loss_C.backward()
optimizer_D.step()
if (epoch+1) % 100 == 0:
print(
"[Epoch %d/%d] [Batch %d/%d] [CE loss: %f] [Stat J of L+J: %f] [Stat J of G+J: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), loss_C.item(), -STAT_u.item(), -STAT_u_l.item())
)
batches_done = epoch * len(dataloader) + i
else:
break
# Fetch training data
s1 = data_all[ind_M_tr]
s2 = Variable(Fake_MNIST_tr.type(Tensor))
S = torch.cat([s1.cpu(),s2.cpu()],0).cuda()
Sv = S.view(2*N1,-1)
# Train G+C
np.random.seed(seed=1102)
torch.manual_seed(1102)
torch.cuda.manual_seed(1102)
S_m_v = discriminator(S)[1].view(2 * N1, -1)
Dxy = Pdist2(S_m_v[:N1, :], S_m_v[N1:, :])
sigma0 = torch.tensor(2*100) * torch.ones([1]).to(device, dtype)
sigma0.requires_grad = True
optimizer_sigma0 = torch.optim.Adam([sigma0], lr=0.001)
for t in range(2000):
TEMPa = MMDu(S_m_v, N1, S_m_v, sigma, sigma0, is_smooth=False)
mmd_value_tempa = -1 * (TEMPa[0] + 10 ** (-8))
mmd_std_tempa = torch.sqrt(TEMPa[1] + 10 ** (-8))
if mmd_std_tempa.item() == 0:
print('error!!')
if np.isnan(mmd_std_tempa.item()):
print('error!!')
STAT_adaptive = torch.div(mmd_value_tempa, mmd_std_tempa)
optimizer_sigma0.zero_grad()
STAT_adaptive.backward(retain_graph=True)
optimizer_sigma0.step()
if t % 100 == 0:
print("mmd_value: ", -1 * mmd_value_tempa.item(), "mmd_std: ", mmd_std_tempa.item(), "Statistic: ",
-1 * STAT_adaptive.item())
# Train D+C
np.random.seed(seed=1102)
torch.manual_seed(1102)
torch.cuda.manual_seed(1102)
S_m_v = discriminator(S)[1].view(2 * N1, -1)
epsilonOPT_dc = torch.log(MatConvert(np.random.rand(1) * 10 ** (-10), device, dtype))
epsilonOPT_dc.requires_grad = True
sigmaOPT_dc = MatConvert(np.ones(1) * np.sqrt(8 * 32 * 32), device, dtype)
sigmaOPT_dc.requires_grad = True
sigma0OPT_dc = MatConvert(np.ones(1) * np.sqrt(2*200), device, dtype)
sigma0OPT_dc.requires_grad = True
optimizer_sigma0_dc = torch.optim.Adam([epsilonOPT_dc] + [sigmaOPT_dc] + [sigma0OPT_dc], lr=0.001)
for t in range(2000):
ep_dc = torch.exp(epsilonOPT_dc) / (1 + torch.exp(epsilonOPT_dc))
sigma_dc = sigmaOPT_dc ** 2
sigma0_dc = sigma0OPT_dc ** 2
TEMPa_dc = MMDu(S_m_v, N1, Sv, sigma_dc, sigma0_dc, ep_dc)
mmd_value_tempa_dc = -1 * (TEMPa_dc[0] + 10 ** (-8))
mmd_std_tempa_dc = torch.sqrt(TEMPa_dc[1] + 10 ** (-8))
STAT_adaptive_dc = torch.div(mmd_value_tempa_dc, mmd_std_tempa_dc)
optimizer_sigma0_dc.zero_grad()
STAT_adaptive_dc.backward(retain_graph=True)
optimizer_sigma0_dc.step()
if t % 100 == 0:
print("mmd_value: ", -1 * mmd_value_tempa_dc.item(), "mmd_std: ", mmd_std_tempa_dc.item(), "Statistic J: ",
-1 * STAT_adaptive_dc.item())
# Run two-sample test on the training set
# G+C
h_adaptive, threshold_adaptive, mmd_value_adaptive = TST_MMD_adaptive_bandwidth(S_m_v, N_per, N1, S_m_v, sigma,
sigma0, alpha, device, dtype)
# G+J
h_u, threshold_u, mmd_value_u = TST_MMD_u(featurizer(S), N_per, N1, Sv, sigma, sigma0_u, ep, alpha, device, dtype,
is_smooth=False)
# L+J
h_u_l, threshold_u_l, mmd_value_u_l = TST_MMD_u_linear_kernel(featurizer(S), N_per, N1, alpha, device, dtype)
# D+C
h_adaptive_dc, threshold_adaptive_dc, mmd_value_adaptive_dc = TST_MMD_u(S_m_v, N_per, N1, Sv, sigma_dc,
sigma0_dc, ep_dc, alpha,device, dtype)
# Record best epsilon, sigma and sigma_0
ep_OPT[kk] = ep.item()
s_OPT[kk] = sigma.item()
s0_OPT[kk] = sigma0_u.item()
# Compute test power of MMD-D and baselines
H_u = np.zeros(N)
T_u = np.zeros(N)
M_u = np.zeros(N)
H_u_l = np.zeros(N)
T_u_l = np.zeros(N)
M_u_l = np.zeros(N)
H_adaptive = np.zeros(N)
T_adaptive = np.zeros(N)
M_adaptive = np.zeros(N)
H_adaptive_dc = np.zeros(N)
T_adaptive_dc = np.zeros(N)
M_adaptive_dc = np.zeros(N)
np.random.seed(1102)
count_u = 0
count_adp = 0
count_u_l = 0
count_adp_dc = 0
for k in range(N):
# Fetch test data
np.random.seed(seed=1102 * (k + 1) + N1)
ind_M = np.random.choice(len(ind_M_te), N1, replace=False)
s1 = data_all[ind_M_te[ind_M]]
np.random.seed(seed=819 * (k + 3) + N1)
ind_F = np.random.choice(len(Fake_MNIST_te), N1, replace=False)
s2 = Variable(Fake_MNIST_te[ind_F].type(Tensor))
S = torch.cat([s1.cpu(), s2.cpu()], 0).cuda()
Sv = S.view(2 * N1, -1)
S_m_v = discriminator(S)[1].view(2 * N1, -1)
# Run two-sample test on the test set
# G+C
h_adaptive, threshold_adaptive, mmd_value_adaptive = TST_MMD_adaptive_bandwidth(S_m_v, N_per, N1, S_m_v, sigma,
sigma0, alpha, device, dtype)
# G+J
h_u, threshold_u, mmd_value_u = TST_MMD_u(featurizer(S), N_per, N1, Sv, sigma, sigma0_u, ep, alpha, device,
dtype, is_smooth=False)
# L+J
h_u_l, threshold_u_l, mmd_value_u_l = TST_MMD_u_linear_kernel(featurizer(S), N_per, N1, alpha, device, dtype)
# D+C
h_adaptive_dc, threshold_adaptive_dc, mmd_value_adaptive_dc = TST_MMD_u(S_m_v, N_per, N1, Sv, sigma_dc,
sigma0_dc, ep_dc, alpha, device, dtype)
# Gather results
count_u = count_u + h_u
count_adp = count_adp + h_adaptive
count_u_l = count_u_l + h_u_l
count_adp_dc = count_adp_dc + h_adaptive_dc
print("L+J:", count_u_l,"G+J:", count_u,"G+C:", count_adp,"D+C:", count_adp_dc)
H_u[k] = h_u
T_u[k] = threshold_u
M_u[k] = mmd_value_u
H_u_l[k] = h_u_l
T_u_l[k] = threshold_u_l
M_u_l[k] = mmd_value_u_l
H_adaptive[k] = h_adaptive
T_adaptive[k] = threshold_adaptive
M_adaptive[k] = mmd_value_adaptive
H_adaptive_dc[k] = h_adaptive_dc
T_adaptive_dc[k] = threshold_adaptive_dc
M_adaptive_dc[k] = mmd_value_adaptive_dc
print("Reject rate_LJ: ", H_u_l.sum() / N_f, "Reject rate_GJ: ", H_u.sum() / N_f, "Reject rate_GC:",
H_adaptive.sum() / N_f,
"Reject rate_DC: ", H_adaptive_dc.sum() / N_f)
Results[0, kk] = H_u_l.sum() / N_f
Results[1, kk] = H_u.sum() / N_f
Results[2, kk] = H_adaptive.sum() / N_f
Results[3, kk] = H_adaptive_dc.sum() / N_f
print("Test Power of deep kernel based tests (K times): ")
print(Results)
print("Average Test Power of deep kernel based tests (K times): ")
print(Results.sum(1) / (kk + 1))