forked from ikostrikov/pytorch-a2c-ppo-acktr-gail
-
Notifications
You must be signed in to change notification settings - Fork 0
/
envs.py
executable file
·218 lines (167 loc) · 6.77 KB
/
envs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import gym
import numpy as np
import torch
from gym.spaces.box import Box
from baselines import bench
from baselines.common.atari_wrappers import make_atari, wrap_deepmind
from baselines.common.vec_env import VecEnvWrapper
from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.common.vec_env.vec_normalize import VecNormalize as VecNormalize_
try:
import dm_control2gym
except ImportError:
pass
try:
import roboschool
except ImportError:
pass
try:
import pybullet_envs
except ImportError:
pass
def make_env(env_id, seed, rank, log_dir, add_timestep, allow_early_resets):
def _thunk():
if env_id.startswith("dm"):
_, domain, task = env_id.split('.')
env = dm_control2gym.make(domain_name=domain, task_name=task)
else:
env = gym.make(env_id)
is_atari = hasattr(gym.envs, 'atari') and isinstance(
env.unwrapped, gym.envs.atari.atari_env.AtariEnv)
if is_atari:
env = make_atari(env_id)
env.seed(seed + rank)
obs_shape = env.observation_space.shape
if add_timestep and len(
obs_shape) == 1 and str(env).find('TimeLimit') > -1:
env = AddTimestep(env)
if log_dir is not None:
env = bench.Monitor(env, os.path.join(log_dir, str(rank)),
allow_early_resets=allow_early_resets)
if is_atari:
if len(env.observation_space.shape) == 3:
env = wrap_deepmind(env)
elif len(env.observation_space.shape) == 3:
raise NotImplementedError("CNN models work only for atari,\n"
"please use a custom wrapper for a custom pixel input env.\n"
"See wrap_deepmind for an example.")
# If the input has shape (W,H,3), wrap for PyTorch convolutions
obs_shape = env.observation_space.shape
if len(obs_shape) == 3 and obs_shape[2] in [1, 3]:
env = TransposeImage(env)
return env
return _thunk
def make_vec_envs(env_name, seed, num_processes, gamma, log_dir, add_timestep,
device, allow_early_resets, num_frame_stack=None):
envs = [make_env(env_name, seed, i, log_dir, add_timestep, allow_early_resets)
for i in range(num_processes)]
if len(envs) > 1:
envs = SubprocVecEnv(envs)
else:
envs = DummyVecEnv(envs)
if len(envs.observation_space.shape) == 1:
if gamma is None:
envs = VecNormalize(envs, ret=False)
else:
envs = VecNormalize(envs, gamma=gamma)
envs = VecPyTorch(envs, device)
if num_frame_stack is not None:
envs = VecPyTorchFrameStack(envs, num_frame_stack, device)
elif len(envs.observation_space.shape) == 3:
envs = VecPyTorchFrameStack(envs, 4, device)
return envs
# Can be used to test recurrent policies for Reacher-v2
class MaskGoal(gym.ObservationWrapper):
def observation(self, observation):
if self.env._elapsed_steps > 0:
observation[-2:0] = 0
return observation
class AddTimestep(gym.ObservationWrapper):
def __init__(self, env=None):
super(AddTimestep, self).__init__(env)
self.observation_space = Box(
self.observation_space.low[0],
self.observation_space.high[0],
[self.observation_space.shape[0] + 1],
dtype=self.observation_space.dtype)
def observation(self, observation):
return np.concatenate((observation, [self.env._elapsed_steps]))
class TransposeImage(gym.ObservationWrapper):
def __init__(self, env=None):
super(TransposeImage, self).__init__(env)
obs_shape = self.observation_space.shape
self.observation_space = Box(
self.observation_space.low[0, 0, 0],
self.observation_space.high[0, 0, 0],
[obs_shape[2], obs_shape[1], obs_shape[0]],
dtype=self.observation_space.dtype)
def observation(self, observation):
return observation.transpose(2, 0, 1)
class VecPyTorch(VecEnvWrapper):
def __init__(self, venv, device):
"""Return only every `skip`-th frame"""
super(VecPyTorch, self).__init__(venv)
self.device = device
# TODO: Fix data types
def reset(self):
obs = self.venv.reset()
obs = torch.from_numpy(obs).float().to(self.device)
return obs
def step_async(self, actions):
actions = actions.squeeze(1).cpu().numpy()
self.venv.step_async(actions)
def step_wait(self):
obs, reward, done, info = self.venv.step_wait()
obs = torch.from_numpy(obs).float().to(self.device)
reward = torch.from_numpy(reward).unsqueeze(dim=1).float()
return obs, reward, done, info
class VecNormalize(VecNormalize_):
def __init__(self, *args, **kwargs):
super(VecNormalize, self).__init__(*args, **kwargs)
self.training = True
def _obfilt(self, obs):
if self.ob_rms:
if self.training:
self.ob_rms.update(obs)
obs = np.clip((obs - self.ob_rms.mean) / np.sqrt(self.ob_rms.var + self.epsilon), -self.clipob, self.clipob)
return obs
else:
return obs
def train(self):
self.training = True
def eval(self):
self.training = False
# Derived from
# https://github.com/openai/baselines/blob/master/baselines/common/vec_env/vec_frame_stack.py
class VecPyTorchFrameStack(VecEnvWrapper):
def __init__(self, venv, nstack, device=None):
self.venv = venv
self.nstack = nstack
wos = venv.observation_space # wrapped ob space
self.shape_dim0 = wos.shape[0]
low = np.repeat(wos.low, self.nstack, axis=0)
high = np.repeat(wos.high, self.nstack, axis=0)
if device is None:
device = torch.device('cpu')
self.stacked_obs = torch.zeros((venv.num_envs,) + low.shape).to(device)
observation_space = gym.spaces.Box(
low=low, high=high, dtype=venv.observation_space.dtype)
VecEnvWrapper.__init__(self, venv, observation_space=observation_space)
def step_wait(self):
obs, rews, news, infos = self.venv.step_wait()
self.stacked_obs[:, :-self.shape_dim0] = \
self.stacked_obs[:, self.shape_dim0:]
for (i, new) in enumerate(news):
if new:
self.stacked_obs[i] = 0
self.stacked_obs[:, -self.shape_dim0:] = obs
return self.stacked_obs, rews, news, infos
def reset(self):
obs = self.venv.reset()
self.stacked_obs = torch.zeros(self.stacked_obs.shape)
self.stacked_obs[:, -self.shape_dim0:] = obs
return self.stacked_obs
def close(self):
self.venv.close()