diff --git a/Manuals/FDS_User_Guide/FDS_User_Guide.tex b/Manuals/FDS_User_Guide/FDS_User_Guide.tex index 54310ef72e..1cdc7e37e0 100644 --- a/Manuals/FDS_User_Guide/FDS_User_Guide.tex +++ b/Manuals/FDS_User_Guide/FDS_User_Guide.tex @@ -2282,14 +2282,11 @@ \subsubsection{Logarithmic Law of the Wall} \subsubsection{Blowing Heat Transfer} \label{info:blowing} -If a surface is emitting (``blowing'') or removing (``sucking'') gas, the flow normal to the surface disrupts the thermal boundary layer. Blowing tends to decrease the heat transfer coefficient while sucking tends to increase it. Adding \ct{BLOWING=T} to the \ct{SURF} line will account for this effect, except for DNS simulations where empirical heat transfer correlations are not used. When \ct{BLOWING=T}, the heat transfer coefficient is adjusted as follows~\cite{Plate_blowing}: +If a surface is emitting (``blowing'') or removing (``sucking'') gas, the flow normal to the surface disrupts the thermal boundary layer. Blowing tends to decrease the heat transfer coefficient while sucking tends to increase it. Adding \ct{BLOWING=T} to the \ct{SURF} line will account for this effect, except for DNS simulations where empirical heat transfer correlations are not used. When \ct{BLOWING=T}, the heat transfer coefficient is adjusted as follows~\cite{Plate_blowing,Taylor&Krishna}: \begin{equation} - \Phi_h = \frac{\dot{m}'' c_p}{h} + h_{\rm blowing} = \underbrace{\left[\frac{\Phi_h}{{\exp}(\Phi_h)-1}\right]}_{{\mbox{\scriptsize \tt BLOWING CORRECTION}}} h \quad ; \quad \Phi_h = \frac{\dot{m}'' c_p}{h} \end{equation} -\begin{equation} - h_{\rm blowing} = \underbrace{\left[\frac{\Phi_h}{{\exp}(\Phi_h)-1}\right]}_{{\mbox{\scriptsize \tt BLOWING CORRECTION}}} h -\end{equation} -where $h$ is the unadjusted heat transfer coefficient, $\dot{m}''$ is the mass flow rate per unit area (positive for blowing), and $c_p$ is the specific heat of the gas. +where $h$ is the unadjusted heat transfer coefficient, $\dot{m}''$ is the mass flow rate per unit area (positive for blowing), and $c_p$ is the specific heat of the gas., \subsection{Adiabatic Surfaces} \label{info:adiabatic} @@ -13359,7 +13356,7 @@ \section{\texorpdfstring{{\tt SURF}}{SURF} (Surface Properties)} \ct{ALLOW_UNDERSIDE_PARTICLES} & Logical & Section~\ref{info:surface_droplets} & & \ct{F} \\ \hline \ct{AREA_MULTIPLIER} & Real & Section~\ref{info:area_mult} & & 1.0 \\ \hline \ct{BACKING} & Character & Section~\ref{info:BACKING} & & \ct{'EXPOSED'} \\ \hline -\ct{BLOWING} & Logical & Section~\ref{blowing} & & \\ \hline +\ct{BLOWING} & Logical & Section~\ref{info:blowing} & & \\ \hline \ct{BURN_AWAY} & Logical & Section~\ref{info:BURN_AWAY} & & \ct{F} \\ \hline \ct{BURN_DURATION} & Real & Section~\ref{info:BURN_DURATION} & s & 1000000 \\ \hline \ct{CELL_SIZE(:)} & Real Array & Section~\ref{info:solid_phase_stability} & m & \\ \hline