forked from CartoonSegmentation/CartoonSegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
repaint_person.py
245 lines (212 loc) · 10.2 KB
/
repaint_person.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import json
import base64
import io
import requests
from PIL import Image
from animeinsseg import AnimeInsSeg
import numpy as np
import argparse
import traceback
import sys
from animeinsseg.inpainting import patch_match
import cv2
import os.path as osp
from omegaconf import OmegaConf
from utils.io_utils import find_all_imgs, submit_request, img2b64, save_encoded_image
INPAINTING_FILL_METHODS = ['fill', 'original', 'latent_noise', 'latent_nothing']
def repaint_img(args, img_path, detector: AnimeInsSeg):
prompt_default = 'masterpiece, best quality, '
if args.prompt:
prompt_default = prompt_default + ',' + args.prompt
nprompt = "lowres, ((bad anatomy)), ((bad hands)), missing finger, extra digits, fewer digits, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts))"
if args.negative_prompt:
nprompt = nprompt + ", " + args.negative_prompt
assert args.fill in INPAINTING_FILL_METHODS, \
f'Fill method must be one of {INPAINTING_FILL_METHODS}.'
resolution = args.resolution
img = Image.open(img_path).convert('RGB')
imgname = osp.basename(img_path)
if img.height > img.width:
W = resolution
H = (img.height / img.width * resolution) // 32 * 32
H = int(H)
else:
H = resolution
W = (img.width / img.height * resolution) // 32 * 32
W = int(W)
if args.to_grey:
img = img.convert('L').convert('RGB')
options_shared = {
'width': W,
'height': H,
'steps': args.steps,
'cfg_scale': args.cfg_scale,
'sample_name': args.sample_name,
'denoising_strength': args.denoising_strength,
"alwayson_scripts": {
"controlnet": {
"args": [
{
"input_image": "",
"module": "lineart_anime",
"model": "control_v11p_sd15s2_lineart_anime [3825e83e]",
"weight": 1,
"resize_mode": "Inner Fit (Scale to Fit)",
"lowvram": False,
"processor_res": resolution,
"threshold_a": 64,
"threshold_b": 64,
"guidance": 1,
"guidance_start": 0,
"guidance_end": 1,
"guessmode": False,
"pixel_perfect": True
}
]
}
},
}
img = img.resize((W, H), resample=Image.Resampling.LANCZOS)
if not args.onebyone:
# detected tags got mixed during the rendering processing
# imgbgr = cv2.cvtColor(np.array(img), cv2.COLOR_BGR2RGB)
# tags, character_tags = detector.tagger.label_cv2_bgr(imgbgr)
prompt = prompt_default
# prompt = prompt_default
img_b64 = img2b64(img)
options_shared['alwayson_scripts']['controlnet']['args'][0]['input_image'] = img_b64
data = {
"init_images": [img_b64],
"prompt": prompt,
"negative_prompt": nprompt,
**options_shared
}
data = json.dumps(data)
print('runing default cldm ...')
print(f'prompt: {prompt} \n negative prompt: {nprompt}')
response = submit_request(args.url, data)
output_img_b64 = response.json()['images'][0]
save_encoded_image(output_img_b64, osp.join(save_dir, 'repaint-default-' + imgname+'.png'))
return
instances = detector.infer(img_path, output_type='numpy', infer_grey=args.to_grey)
instances.remove_duplicated()
im_cv = cv2.imread(img_path)
ins_drawed = instances.draw_instances(im_cv, draw_bbox=False, mask_alpha=0.35, draw_tags=False)
cv2.imwrite(osp.join(save_dir, imgname+'_instances.png'), ins_drawed)
mask_fg = None
masks = []
if not instances.is_empty:
for mask in instances.masks:
mask = cv2.resize(mask.astype(np.uint8) * 255, (W, H), interpolation=cv2.INTER_AREA)
mask = Image.fromarray(mask)
masks.append(mask)
mask_fg = cv2.resize(instances.compose_masks().astype(np.uint8) * 255, (W, H), interpolation=cv2.INTER_AREA)
if mask_fg is not None:
bg = patch_match.inpaint(np.array(img), mask_fg, patch_size=3)
bg_tags, character_tags = detector.tagger.label_cv2_bgr(cv2.cvtColor(bg, cv2.COLOR_BGR2RGB))
bg_prompt = ','.join(bg_tags) + ',' + prompt_default
bg_nprompt = nprompt + ',' + args.bg_nprompt
bg_prompt = bg_prompt.replace('portrait', '')
bg = Image.fromarray(bg)
bg_b64 = img2b64(bg)
options_shared['alwayson_scripts']['controlnet']['args'][0]['input_image'] = bg_b64
data = {
"init_images": [bg_b64],
"prompt": bg_prompt,
"negative_prompt": bg_nprompt,
**options_shared
}
data = json.dumps(data)
print('fg...')
print(f'bg prompt: {bg_prompt} \nbg negative prompt: {bg_nprompt}')
response = submit_request(args.url, data)
output_img_b64 = response.json()['images'][0]
if args.save_intermediate:
save_encoded_image(output_img_b64, osp.join(save_dir, 'repaint-bg-' + imgname+'.png'))
bg_repainted = Image.open(io.BytesIO(base64.b64decode(output_img_b64)))
img_bg_repainted = Image.composite(img, bg_repainted, Image.fromarray(mask_fg))
# img_bg_repainted.save(osp.join(save_dir, 'repaint-bg-composed-' + imgname+'.png'))
img = img_bg_repainted
if instances.is_empty:
return
img_b64 = None
num_fg = len(masks)
for ii, mask in enumerate(masks):
if img_b64 is None:
img_b64 = img2b64(img)
mask_b64 = img2b64(mask)
tags = instances.tags[ii]
prompt = tags.replace(' ', ',') + ',' + prompt_default
# prompt = prompt_default
options_shared['alwayson_scripts']['controlnet']['args'][0]['input_image'] = img_b64
request = {
"init_images": [img_b64],
"mask": mask_b64,
"prompt": prompt,
"negative_prompt": nprompt,
'mask_blur': args.mask_blur,
'inpainting_fill': INPAINTING_FILL_METHODS.index(args.fill),
'inpaint_full_res': args.inpaint_full_res,
'inpaint_full_res_padding': args.inpaint_full_res_padding,
**options_shared
}
data = json.dumps(request)
print(f'runing fg repainting...{ii+1}/{num_fg}')
print(f'fg prompt: {prompt} \n fg negative prompt: {nprompt}')
response = submit_request(args.url, data)
img_b64 = response.json()['images'][0]
if args.save_intermediate or ii == num_fg - 1:
save_encoded_image(img_b64, osp.join(save_dir, f'repaint-fg{ii}-' + imgname+'.png'))
mask.save(osp.join(save_dir, f'repaint-fg{ii}-mask-' + imgname+'.png'))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Inpaint instances of people using stable '
'diffusion.')
parser.add_argument('--img_path', type=str, default='', help='Path to input image.')
parser.add_argument('--onebyone', type=bool, default=True, help='repainting person one by one')
parser.add_argument('-p', '--prompt', type=str, default='',
help='Stable diffusion prompt to use.')
parser.add_argument('-n', '--negative_prompt', type=str, default='',
help='Stable diffusion negative prompt.')
parser.add_argument('-W', '--width', type=int, default=768, help='Width of output image.')
parser.add_argument('-H', '--height', type=int, default=768, help='Height of output image.')
parser.add_argument('-s', '--steps', type=int, default=24, help='Number of diffusion steps.')
parser.add_argument('-c', '--cfg_scale', type=int, default=9, help='Classifier free guidance '
'scale, i.e. how strongly the image should conform to prompt.')
parser.add_argument('-S', '--sample_name', type=str, default='Euler a', help='Name of sampler '
'to use.')
parser.add_argument('-d', '--denoising_strength', type=float, default=0.75, help='How much to '
'disregard original image.')
parser.add_argument('-f', '--fill', type=str, default=INPAINTING_FILL_METHODS[1],
help='The fill method to use for inpainting.')
parser.add_argument('-b', '--mask_blur', type=int, default=4, help='Blur radius of Gaussian '
'filter to apply to mask.')
parser.add_argument('-r', '--resolution', type=int, default=640, help='inpainting resolution')
parser.add_argument('--save_dir', type=str, default='repaint_output')
parser.add_argument('--url', type=str, default='http://127.0.0.1:7860/sdapi/v1/img2img', help='img2img url')
parser.add_argument('--cfg', type=str, default='', help='repaint config path')
parser.add_argument('--bg_nprompt', type=str, default='((person)), character, 1girl, 1boy', help='background negative prompt')
parser.add_argument('--inpaint_full_res', type=int, default=1)
parser.add_argument('--inpaint_full_res_padding', type=int, default=32)
parser.add_argument('--detector_ckpt', type=str, default='models/AnimeInstanceSegmentation/rtmdetl_e60.ckpt')
parser.add_argument('--save_intermediate', type=bool, default=False)
parser.add_argument('--to-grey', type=bool, default=False)
parser.add_argument('--infer-tagger', type=bool, default=True)
args = parser.parse_args()
if osp.exists(args.cfg):
args = OmegaConf.create(vars(args))
args.merge_with(OmegaConf.load(args.cfg))
print(args)
save_dir = args.save_dir
if not osp.exists(save_dir):
os.makedirs(save_dir)
detector = AnimeInsSeg(args.detector_ckpt, device='cuda')
detector.init_tagger()
imgp_list = args.img_path
if isinstance(imgp_list, str):
if osp.isdir(imgp_list):
imgp_list = find_all_imgs(imgp_list, abs_path=True)
else:
imgp_list = [imgp_list]
for imgp in imgp_list:
repaint_img(args, imgp, detector)