forked from microsoft/CyberBattleSim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
notebook_withdefender.py
131 lines (108 loc) · 4.07 KB
/
notebook_withdefender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""Attacker agent benchmark comparison in presence of a basic defender
This notebooks can be run directly from VSCode, to generate a
traditional Jupyter Notebook to open in your browser
you can run the VSCode command `Export Currenty Python File As Jupyter Notebook`.
"""
# %%
import sys
import logging
import gym
import importlib
import cyberbattle.agents.baseline.learner as learner
import cyberbattle.agents.baseline.plotting as p
import cyberbattle.agents.baseline.agent_wrapper as w
import cyberbattle.agents.baseline.agent_dql as dqla
import cyberbattle.agents.baseline.agent_randomcredlookup as rca
from cyberbattle.agents.baseline.agent_wrapper import Verbosity
from cyberbattle._env.defender import ScanAndReimageCompromisedMachines
from cyberbattle._env.cyberbattle_env import AttackerGoal, CyberBattleEnv, DefenderConstraint
from typing import cast
importlib.reload(learner)
importlib.reload(p)
logging.basicConfig(stream=sys.stdout, level=logging.ERROR, format="%(levelname)s: %(message)s")
cyberbattlechain_defender = cast(CyberBattleEnv, gym.make('CyberBattleChain-v0',
size=10,
attacker_goal=AttackerGoal(
own_atleast=0,
own_atleast_percent=1.0
),
defender_constraint=DefenderConstraint(
maintain_sla=0.80
),
defender_agent=ScanAndReimageCompromisedMachines(
probability=0.6,
scan_capacity=2,
scan_frequency=5)))
ep = w.EnvironmentBounds.of_identifiers(
maximum_total_credentials=22,
maximum_node_count=22,
identifiers=cyberbattlechain_defender.identifiers
)
iteration_count = 600
training_episode_count = 10
# %%
dqn_with_defender = learner.epsilon_greedy_search(
cyberbattle_gym_env=cyberbattlechain_defender,
environment_properties=ep,
learner=dqla.DeepQLearnerPolicy(
ep=ep,
gamma=0.15,
replay_memory_size=10000,
target_update=5,
batch_size=256,
learning_rate=0.01),
episode_count=training_episode_count,
iteration_count=iteration_count,
epsilon=0.90,
render=False,
epsilon_exponential_decay=5000,
epsilon_minimum=0.10,
verbosity=Verbosity.Quiet,
title="DQL"
)
# %%
dql_exploit_run = learner.epsilon_greedy_search(
cyberbattlechain_defender,
ep,
learner=dqn_with_defender['learner'],
episode_count=training_episode_count,
iteration_count=iteration_count,
epsilon=0.0, # 0.35,
render=False,
# render_last_episode_rewards_to='images/chain10',
verbosity=Verbosity.Quiet,
title="Exploiting DQL"
)
# %%
credlookup_run = learner.epsilon_greedy_search(
cyberbattlechain_defender,
ep,
learner=rca.CredentialCacheExploiter(),
episode_count=10,
iteration_count=iteration_count,
epsilon=0.90,
render=False,
epsilon_exponential_decay=10000,
epsilon_minimum=0.10,
verbosity=Verbosity.Quiet,
title="Credential lookups (ϵ-greedy)"
)
# %%
# Plots
all_runs = [
credlookup_run,
dqn_with_defender,
dql_exploit_run
]
p.plot_averaged_cummulative_rewards(
all_runs=all_runs,
title=f'Attacker agents vs Basic Defender -- rewards\n env={cyberbattlechain_defender.name}, episodes={training_episode_count}'
)
# p.plot_episodes_length(all_runs)
p.plot_averaged_availability(title=f"Attacker agents vs Basic Defender -- availability\n env={cyberbattlechain_defender.name}, episodes={training_episode_count}", all_runs=all_runs)
# %%
# %%
# %%
# %%