Skip to content

Releases: foss-for-synopsys-dwc-arc-processors/synopsys-caffe-models

MWEV2018.12.RC1

10 Jan 14:45
Compare
Choose a tag to compare

This is release 2018.12.RC1 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with Synopsys-Caffe v2018.12.RC1 and the MetaWare EV Development Toolkit v2018.12.RC1 from Synopsys.

Supported Models

  • alexnet
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • googlenet
  • icnet
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • mobilenet_ssd
  • openpose
  • pspnet
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • squeezenet
  • ssd
  • unet
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc
  • yolo_v3 (yolo_v3_tiny included)

Images

  • imagenet_mean - mean images for different image sizes
  • imagenet_test_images - simple set of test images
  • images - different image data sub-sets

Changes vs v2018.09

New models

  • openpose
  • segnet
  • pspnet
  • unet
  • yolo_v3 (yolo_v3_tiny included)

Improved parts

Added improved compressed, pruned and random-pruned models

Helper tools

git_sparse_download.sh(bat) - helps to download just part of models.

MWEV2018.09.RC2

19 Oct 13:46
e1e31c6
Compare
Choose a tag to compare

This is release 2018.09.RC2 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with Synopsys-Caffe v2018.09.RC2 and the MetaWare EV Development Toolkit v2018.09.RC2 from Synopsys.

Supported Models

  • alexnet
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • googlenet
  • icnet
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • mobilenet_ssd
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • squeezenet
  • ssd
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc

Changes vs v2018.06

New models

  • icnet
  • inception_resnet_v1
  • mobilenet_ssd
  • pvanet

Improved models

  • alexnet
  • squezenet - instead of SqueezeNet_v1.0 SqueezeNet_v1.1
  • denoizer
  • facedetect_v1
  • googlenet_cnn
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • mobilenet
  • resnet_101
  • resnet_152
  • resnet_50
  • ssd
  • vgg16
  • yolo_v2_voc

Removed models

  • scene_segmentation

Images

  • imagenet_mean - mean images for different image sizes
  • imagenet_test_images - simple set of test images
  • images - different image data sub-sets

Helper tools

git_sparse_download.sh(bat) - helps to download just part of models.

MWEV2018.09

06 Nov 16:33
e1e31c6
Compare
Choose a tag to compare

This is release 2018.09 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with Synopsys-Caffe v2018.09 and the MetaWare EV Development Toolkit v2018.09 from Synopsys.

Supported Models

  • alexnet
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • googlenet
  • icnet
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • mobilenet_ssd
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • squeezenet
  • ssd
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc

Changes vs v2018.06

New models

  • icnet
  • inception_resnet_v1
  • mobilenet_ssd
  • pvanet

Improved models

  • alexnet
  • squezenet - instead of SqueezeNet_v1.0 SqueezeNet_v1.1
  • denoizer
  • facedetect_v1
  • googlenet_cnn
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • mobilenet
  • resnet_101
  • resnet_152
  • resnet_50
  • ssd
  • vgg16
  • yolo_v2_voc

Removed models

  • scene_segmentation

Images

  • imagenet_mean - mean images for different image sizes
  • imagenet_test_images - simple set of test images
  • images - different image data sub-sets

Helper tools

git_sparse_download.sh(bat) - helps to download just part of models.

MWEV2018.09.RC1

04 Oct 12:31
Compare
Choose a tag to compare

This is release 2018.09.RC1 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with Synopsys-Caffe v2018.09.RC1 and the MetaWare EV Development Toolkit v2018.09.RC1 from Synopsys.

Supported Models

  • alexnet
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • googlenet
  • icnet
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • mobilenet_ssd
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • Squeeze_Netv1.0
  • SqueezeNet_v1.1
  • ssd
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc

Changes vs v2018.06

New models

  • icnet
  • inception_resnet_v1
  • mobilenet_ssd
  • pvanet

Improved models

  • alexnet
  • SqueezeNet_v1.0
  • SqueezeNet_v1.1)
  • denoizer
  • facedetect_v1
  • googlenet_cnn
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • mobilenet
  • resnet_101
  • resnet_152
  • resnet_50
  • ssd
  • vgg16
  • yolo_v2_voc

Removed models

  • scene_segmentation

Images

  • imagenet_mean - mean images for different image sizes
  • imagenet_test_images - simple set of test images
  • images - different image data sub-sets

MWEV2018.06

23 Jul 08:56
a58f216
Compare
Choose a tag to compare

This is release 2018.06 RC3 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with synopsys-caffe and the MetaWare EV Development Toolkit v2018.06 RC3 from Synopsys.

Supported Models

  • alexnet
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • googlenet
  • imagenet_test_images
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • scene_segmentation
  • Squeeze_Net_v1.0
  • SqueezeNet_v1.1
  • ssd
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc

New models vs v2018.03

  • faster_rcnn_resnet101
  • inception_resnet_v1
  • inception_resnet_v2
  • resnet_101_cnn
  • resnet_152_cnn

Fixed models vs v2018.03

  • inception_resnet_v2
  • inception_v3
  • inception_v4
  • mobilnet
  • resnet_50

Usage Instructions

IMPORTANT NOTE: This repository uses git-lfs for large file storage. You can't use zip and tar files listed in the "Assets" section above (added by default by github). You must clone the repository using the instructions below

  1. Install git-lfs

  2. Ensure git-lfs and git versions you use are compatible (equal or greater than below)

$ git lfs version
git-lfs/2.0.2 # or newer

$ git –version
git version 2.9.3 # or newer
  1. Add SSH key to your GitHub account (if you haven't already)

  2. clone the repo:

$ git clone https://github.com/foss-for-synopsys-dwc-arc-processors/synopsys-caffe-models.git

2018.09-ENG-180824

24 Aug 18:13
Compare
Choose a tag to compare

This is release 2018.09-ENG-180824 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with synopsys-caffe and the MetaWare EV Development Toolkit v2018.06 RC3 from Synopsys.

Supported Models

  • alexnet
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • googlenet
  • imagenet_test_images
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • scene_segmentation
  • Squeeze_Net_v1.0
  • SqueezeNet_v1.1
  • ssd
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc

New models vs v2018.03

  • faster_rcnn_resnet101
  • inception_resnet_v1
  • inception_resnet_v2
  • resnet_101_cnn
  • resnet_152_cnn

Fixed models vs v2018.03

  • inception_resnet_v2
  • inception_v3
  • inception_v4
  • mobilnet
  • resnet_50

Usage Instructions

IMPORTANT NOTE: This repository uses git-lfs for large file storage. You can't use zip and tar files listed in the "Assets" section above (added by default by github). You must clone the repository using the instructions below

  1. Install git-lfs

  2. Ensure git-lfs and git versions you use are compatible (equal or greater than below)

$ git lfs version
git-lfs/2.0.2 # or newer

$ git –version
git version 2.9.3 # or newer
  1. Add SSH key to your GitHub account (if you haven't already)

  2. clone the repo:

$ git clone https://github.com/foss-for-synopsys-dwc-arc-processors/synopsys-caffe-models.git

MWEV2018.06RC2

19 Jul 08:45
Compare
Choose a tag to compare

This is release 2018.06 RC2 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with synopsys-caffe and the MetaWare EV Development Toolkit v2018.06 RC2 from Synopsys.

Supported Models

  • alexnet
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • googlenet
  • imagenet_test_images
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • scene_segmentation
  • Squeeze_Net_v1.0
  • SqueezeNet_v1.1
  • ssd
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc

New models vs v2018.03

  • faster_rcnn_resnet101
  • inception_resnet_v1
  • inception_resnet_v2
  • resnet_101_cnn
  • resnet_152_cnn

Fixed models vs v2018.03

  • inception_resnet_v2
  • inception_v3
  • inception_v4
  • mobilnet
  • resnet_50

Usage Instructions

IMPORTANT NOTE: This repository uses git-lfs for large file storage. You can't use zip and tar files listed in the "Assets" section above (added by default by github). You must clone the repository using the instructions below

  1. Install git-lfs

  2. Ensure git-lfs and git versions you use are compatible (equal or greater than below)

$ git lfs version
git-lfs/2.0.2 # or newer

$ git –version
git version 2.9.3 # or newer
  1. Add SSH key to your GitHub account (if you haven't already)

  2. clone the repo:

$ git clone https://github.com/foss-for-synopsys-dwc-arc-processors/synopsys-caffe-models.git

Caffe Models for DesignWare EV Processors, v2018.06 RC1

09 Jun 09:26
Compare
Choose a tag to compare

This is release 2018.06 RC1 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with synopsys-caffe and the MetaWare EV Development Toolkit v2018.06 RC1 from Synopsys.

Supported Models

  • alexnet
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • googlenet
  • imagenet_test_images
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • scene_segmentation
  • Squeeze_Net_v1.0
  • SqueezeNet_v1.1
  • ssd
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc

New models vs v2018.03

  • faster_rcnn_resnet101
  • inception_resnet_v1
  • inception_resnet_v2
  • resnet_101_cnn
  • resnet_152_cnn

Fixed models vs v2018.03

  • inception_resnet_v2
  • inception_v3
  • inception_v4
  • mobilnet
  • resnet_50

Usage Instructions

IMPORTANT NOTE: This repository uses git-lfs for large file storage. You can't use zip and tar files listed in the "Assets" section above (added by default by github). You must clone the repository using the instructions below

  1. Install git-lfs

  2. Ensure git-lfs and git versions you use are compatible (equal or greater than below)

$ git lfs version
git-lfs/2.0.2 # or newer

$ git –version
git version 2.9.3 # or newer
  1. Add SSH key to your GitHub account (if you haven't already)

  2. clone the repo:

$ git clone https://github.com/foss-for-synopsys-dwc-arc-processors/synopsys-caffe-models.git

Caffe Models for DesignWare EV Processors, v2018.03 RC2

03 Apr 14:53
Compare
Choose a tag to compare

This is RC2 for 2018.03 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with synopsys-caffe and the MetaWare EV Development Toolkit v2018.03 RC2, from Synopsys.

Supported Models

  • alexnet
  • denoiser
  • dencenet
  • facedetect_v1
  • facedetect_v2
  • googlenet
  • imagenet_test_images - new imagenet test images
  • inception_resnet_v2 - new
  • inception_v3 - new
  • inception_v4 - new
  • lenet
  • mobilnet - new put all mobilnet models together in one folder
  • resnet_50
  • scene_segmentation
  • Squeeze_Net_v1.0
  • SqueezeNet_v1.1
  • ssd
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc

Usage Instructions

IMPORTANT NOTE: This repository uses git-lfs for large file storage. You can't use zip and tar files listed in the "Assets" section above (added by default by github). You must clone the repository using the instructions below

  1. Install git-lfs

  2. Ensure git-lfs and git versions you use are compatible (equal or greater than below)

$ git lfs version
git-lfs/2.0.2

$ git –version
git version 2.9.3
  1. Add SSH key to your GitHub account (if you haven't already)

  2. clone the repo:

$ git clone https://github.com/foss-for-synopsys-dwc-arc-processors/synopsys-caffe-models.git

Caffe Models for DesignWare EV Processors, v2018.03

23 Apr 07:55
Compare
Choose a tag to compare

This is release 2018.03 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with synopsys-caffe and the MetaWare EV Development Toolkit v2018.03 from Synopsys.

Supported Models

  • alexnet
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • googlenet
  • imagenet_test_images
  • inception_resnet_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • resnet_50
  • scene_segmentation
  • Squeeze_Net_v1.0
  • SqueezeNet_v1.1
  • ssd
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc

New models vs v2017.12

  • densenet
  • inception_resnet_v2
  • inception_v3
  • inception_v4
  • mobilenet
  • ssd

Usage Instructions

IMPORTANT NOTE: This repository uses git-lfs for large file storage. You can't use zip and tar files listed in the "Assets" section above (added by default by github). You must clone the repository using the instructions below

  1. Install git-lfs

  2. Ensure git-lfs and git versions you use are compatible (equal or greater than below)

$ git lfs version
git-lfs/2.0.2 # or newer

$ git –version
git version 2.9.3 # or newer
  1. Add SSH key to your GitHub account (if you haven't already)

  2. clone the repo:

$ git clone https://github.com/foss-for-synopsys-dwc-arc-processors/synopsys-caffe-models.git