-
Notifications
You must be signed in to change notification settings - Fork 1
/
P71.R
41 lines (33 loc) · 1.22 KB
/
P71.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# making table data sets
library(dplyr)
library(tidyr)
library(MorpheusData)
#############benchmark 1
dat <- read.table(text=
" ID a b O H
1 bo 10 -10 Nn In+
2 bo 9 -47 Hy In+
3 bo 3 13 Nn In+
4 co 1 -86 Nn In-
5 co 5 -64 Hy In-
6 co 8 73 Nn In-
", header=T)
write.csv(dat, "data-raw/p71_input1.csv", row.names=FALSE)
df_out = dat %>%
gather(int, value, a, b) %>%
filter(int == "a") %>%
group_by(O, H) %>%
summarise(value = mean(value))
write.csv(df_out, "data-raw/p71_output1.csv", row.names=FALSE)
p71_output1 <- read.csv("data-raw/p71_output1.csv", check.names = FALSE)
fctr.cols <- sapply(p71_output1, is.factor)
int.cols <- sapply(p71_output1, is.integer)
p71_output1[, fctr.cols] <- sapply(p71_output1[, fctr.cols], as.character)
p71_output1[, int.cols] <- sapply(p71_output1[, int.cols], as.numeric)
save(p71_output1, file = "data/p71_output1.rdata")
p71_input1 <- read.csv("data-raw/p71_input1.csv", check.names = FALSE)
fctr.cols <- sapply(p71_input1, is.factor)
int.cols <- sapply(p71_input1, is.integer)
p71_input1[, fctr.cols] <- sapply(p71_input1[, fctr.cols], as.character)
p71_input1[, int.cols] <- sapply(p71_input1[, int.cols], as.numeric)
save(p71_input1, file = "data/p71_input1.rdata")