-
Notifications
You must be signed in to change notification settings - Fork 1
/
P87.R
37 lines (29 loc) · 1.18 KB
/
P87.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# making table data sets
library(dplyr)
library(tidyr)
library(MorpheusData)
#############benchmark 87
dat <- read.table(text=
"Which Color Response Count
Control Red 2 10
Control Blue 3 20
Treatment Red 1 14
Treatment Blue 4 21", header=T)
write.csv(dat, "data-raw/p87_input1.csv", row.names=FALSE)
df_out = dat %>%
gather(var, val, Response:Count) %>%
unite(RN, var, Which) %>%
spread(RN, val)
write.csv(df_out, "data-raw/p87_output1.csv", row.names=FALSE)
p87_output1 <- read.csv("data-raw/p87_output1.csv", check.names = FALSE)
fctr.cols <- sapply(p87_output1, is.factor)
int.cols <- sapply(p87_output1, is.integer)
p87_output1[, fctr.cols] <- sapply(p87_output1[, fctr.cols], as.character)
p87_output1[, int.cols] <- sapply(p87_output1[, int.cols], as.numeric)
save(p87_output1, file = "data/p87_output1.rdata")
p87_input1 <- read.csv("data-raw/p87_input1.csv", check.names = FALSE)
fctr.cols <- sapply(p87_input1, is.factor)
int.cols <- sapply(p87_input1, is.integer)
p87_input1[, fctr.cols] <- sapply(p87_input1[, fctr.cols], as.character)
p87_input1[, int.cols] <- sapply(p87_input1[, int.cols], as.numeric)
save(p87_input1, file = "data/p87_input1.rdata")