-
Notifications
You must be signed in to change notification settings - Fork 100
/
main.py
executable file
·169 lines (157 loc) · 6.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from absl import app, flags, logging
import tensorflow as tf
tf.compat.v1.enable_eager_execution()
tf.compat.v1.enable_v2_behavior()
tf.compat.v1.enable_v2_tensorshape()
from yolo3.enums import BACKBONE, MODE, OPT
from train import train
from train_backbone import train as train_backbone
from yolo import YOLO, detect_video, detect_img, export_tflite_model, export_serving_model, calculate_map, export_tfjs_model
FLAGS = flags.FLAGS
flags.DEFINE_enum_class(
'backbone',
default=BACKBONE.MOBILENETV2,
enum_class=BACKBONE,
help=
"Select network backbone, One of {'MOBILENETV2','DARKNET53','EFFICIENTNET'}"
)
flags.DEFINE_integer('batch_size',
default=8,
lower_bound=0,
help="Train batch size")
flags.DEFINE_string('config', default=None, help="Config path")
flags.DEFINE_multi_integer('epochs',
default=[10, 10],
lower_bound=0,
help="Frozen train epochs and Full train epochs")
flags.DEFINE_string('export', default='export_model/8', help="Export path")
flags.DEFINE_string('input', default=None, help="Input data for various mode")
flags.DEFINE_multi_integer('input_size',
default=(380, 380),
lower_bound=0,
help="Input size")
flags.DEFINE_string('log_directory', default=None, help="Log directory")
flags.DEFINE_string(
'model',
default=None,
help="Model path")
flags.DEFINE_enum_class(
'mode',
default=MODE.TRAIN,
enum_class=MODE,
help=
"Select exec mode, One of {'TRAIN','TRAIN_BACKBONE','IMAGE','VIDEO','TFLITE','SERVING','MAP','PRUNE'}"
)
flags.DEFINE_multi_integer('gpus', default=[0,1], help="Specific gpu indexes to run")
flags.DEFINE_string('train_dataset',
default='/usr/local/srv/tfrecords/train/*2007*.tfrecords',
help="Dataset glob for train")
flags.DEFINE_string('val_dataset',
default='/usr/local/srv/tfrecords/val/*2007*.tfrecords',
help="Dataset glob for validate")
flags.DEFINE_string('test_dataset',
default='/usr/local/srv/tfrecords/test/*2007*.tfrecords',
help="Dataset glob for test")
flags.DEFINE_string('anchors_path',
default='model_data/yolo_anchors.txt',
help="Anchors path")
flags.DEFINE_string('classes_path',
default='model_data/voc_classes.txt',
help="Classes Path")
flags.DEFINE_multi_float('learning_rate',
default=[1e-3, 1e-4],
lower_bound=0,
help="Learning rate")
flags.DEFINE_enum_class(
'opt',
default=None,
enum_class=OPT,
help="Select optimization, One of {'XLA','DEBUG','MKL'}")
flags.DEFINE_string('tpu_address', default=None, help="TPU address")
flags.DEFINE_bool('freeze', default=False,help="Whether freeze backbone")
flags.DEFINE_bool('prune', default=False, help="Whether prune model")
def parse_tuple(val):
if isinstance(val, str):
return tuple([int(num) for num in val[1:-1].split(',')])
return tuple(val)
def log(msg):
logging.info(msg)
def get_gpu_name(valid_gpus):
return [':'.join(gpu.name.split(':')[1:]) for gpu in valid_gpus]
def main(_):
flags_dict = FLAGS.flag_values_dict()
if FLAGS.config is not None:
import yaml
with open(FLAGS.config) as stream:
config = yaml.safe_load(stream)
if 'backbone' in config:
config['backbone'] = BACKBONE[config['backbone']]
if 'opt' in config:
config['opt'] = OPT[config['opt']]
if 'input_size' in config:
if isinstance(config['input_size'], str):
config['input_size'] = parse_tuple(config['input_size'])
elif isinstance(config['input_size'], list):
config['input_size'] = [
parse_tuple(size) for size in config['input_size']
]
else:
raise ValueError(
'Please use array or tuple to define input_size')
if 'learning_rate' in config:
config['learning_rate'] = [
float(lr) for lr in config['learning_rate']
]
flags_dict.update(config)
opt = flags_dict.get('opt', None)
if opt == OPT.XLA:
tf.config.optimizer.set_jit(True)
elif opt == OPT.DEBUG:
tf.compat.v2.random.set_seed(111111);
tf.debugging.set_log_device_placement(True)
tf.config.experimental_run_functions_eagerly(True)
logging.set_verbosity(logging.DEBUG)
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
gpu_indexs=[int(gpu.name.split(':')[-1]) for gpu in gpus]
valid_gpu_indexs=list(filter(lambda gpu: gpu in flags_dict['gpus'],gpu_indexs))
valid_gpus=[gpus[index] for index in valid_gpu_indexs]
tf.config.experimental.set_visible_devices(valid_gpus, 'GPU')
flags_dict['gpus']=get_gpu_name(valid_gpus)
if flags_dict['backbone'] is None:
raise ValueError("Please select your model's backbone")
if FLAGS.mode == MODE.TRAIN:
log('Train mode')
train(flags_dict)
elif FLAGS.mode == MODE.TRAIN_BACKBONE:
log('Train backbone mode')
train_backbone(flags_dict)
elif FLAGS.mode == MODE.IMAGE:
if flags_dict['model'] is None:
raise ValueError('Please enter your model path')
log('Image detection mode')
detect_img(YOLO(flags_dict))
elif FLAGS.mode == MODE.VIDEO:
if flags_dict['model'] is None:
raise ValueError('Please enter your model path')
log('Video detection mode')
detect_video(YOLO(flags_dict), FLAGS.input, FLAGS.output)
elif FLAGS.mode == MODE.MAP:
if flags_dict['model'] is None:
raise ValueError('Please enter your model path')
log('Calculate test dataset map')
flags_dict['score']=0.0
calculate_map(YOLO(flags_dict), FLAGS.test_dataset)
elif FLAGS.mode == MODE.SERVING:
tf.disable_eager_execution()
log('Export hdf5 model to serving model')
export_serving_model(YOLO(flags_dict), FLAGS.export)
elif FLAGS.mode == MODE.TFLITE:
log('Export hdf5 model to tflite model')
export_tflite_model(YOLO(flags_dict), FLAGS.export)
elif FLAGS.mode == MODE.TFJS:
log('Export hdf5 model to tensorflow.js model')
export_tfjs_model(YOLO(flags_dict), FLAGS.export)
if __name__ == '__main__':
logging.set_verbosity(logging.INFO)
app.run(main)