-
Notifications
You must be signed in to change notification settings - Fork 0
/
working_version.py
445 lines (370 loc) · 13.8 KB
/
working_version.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import random as rd
import pygame as pg
import tkinter as tk
from tkinter import messagebox
class cube(object):
def __init__(self,start,dirnx=1,dirny=0, color=(0, 255, 0)):
self.pos = start
self.dirnx = 1
self.dirny = 0
self.color = color
def move(self, dirnx, dirny):
self.dirnx = dirnx
self.dirny = dirny
self.pos = (self.pos[0] + self.dirnx, self.pos[1] + self.dirny)
def draw(self, surface, eyes=False):
dis = width//rows
i = self.pos[0]
j = self.pos[1]
pg.draw.rect(surface, self.color, (i*dis+1, j*dis+1, dis-2, dis-2))
if eyes:
centre = dis//2
radius = 3
circleMiddle = (i*dis+centre-radius,j*dis+8)
circleMiddle2 = (i*dis + dis -radius*2, j*dis+8)
pg.draw.circle(surface, (0,0,0), circleMiddle, radius)
pg.draw.circle(surface, (0,0,0), circleMiddle2, radius)
class snake(object):
body = []
turns = {}
def __init__(self, color, pos):
self.color = color
self.head = cube(pos)
self.body.append(self.head)
self.dirnx = 0
self.dirny = 1
def move(self, snack_loc):
if AI: # AI turned on
# if len(self.body) < 15:
decision = A_Star_Decider(snack_loc, self, width)
# print("DIRECTION:", decision, "\n")
if decision == 0: #LEFT
self.dirnx = -1
self.dirny = 0
self.turns[self.head.pos[:]] = [self.dirnx, self.dirny]
elif decision == 1: #RIGHT
self.dirnx = 1
self.dirny = 0
self.turns[self.head.pos[:]] = [self.dirnx, self.dirny]
elif decision == 2: #UP
self.dirnx = 0
self.dirny = -1
self.turns[self.head.pos[:]] = [self.dirnx, self.dirny]
elif decision == 3: #DOWN
self.dirnx = 0
self.dirny = 1
self.turns[self.head.pos[:]] = [self.dirnx, self.dirny]
# else:
# decision = A_Star_Decider((0,0), self, width)
# # # # # # # hamilton()
else: # Human player
for event in pg.event.get():
if event.type == quit:
quit()
keys = pg.key.get_pressed()
for key in keys:
if keys[pg.K_LEFT] or keys[pg.K_a]:
self.dirnx = -1
self.dirny = 0
self.turns[self.head.pos[:]] = [self.dirnx, self.dirny]
elif keys[pg.K_RIGHT] or keys[pg.K_d]:
self.dirnx = 1
self.dirny = 0
self.turns[self.head.pos[:]] = [self.dirnx, self.dirny]
elif keys[pg.K_UP] or keys[pg.K_w]:
self.dirnx = 0
self.dirny = -1
self.turns[self.head.pos[:]] = [self.dirnx, self.dirny]
elif keys[pg.K_DOWN] or keys[pg.K_s]:
self.dirnx = 0
self.dirny = 1
self.turns[self.head.pos[:]] = [self.dirnx, self.dirny]
for i, c in enumerate(self.body):
p = c.pos[:]
if p in self.turns:
turn = self.turns[p]
c.move(turn[0],turn[1])
if i == len(self.body)-1:
self.turns.pop(p)
else:
if ((c.dirnx == -1 and c.pos[0] <= 0) or (c.dirnx == 1 and c.pos[0] >= rows-1) or
(c.dirny == 1 and c.pos[1] >= rows-1) or (c.dirny == -1 and c.pos[1] <= 0)):
print("wall terminate")
terminate(0)
else: c.move(c.dirnx,c.dirny)
def reset(self, pos):
self.head = cube(pos)
self.body = []
self.body.append(self.head)
self.turns = {}
self.dirnx = 0
self.dirny = 1
def addCube(self):
tail = self.body[-1]
dx, dy = tail.dirnx, tail.dirny
if dx == 1 and dy == 0:
self.body.append(cube((tail.pos[0]-1,tail.pos[1])))
elif dx == -1 and dy == 0:
self.body.append(cube((tail.pos[0]+1,tail.pos[1])))
elif dx == 0 and dy == 1:
self.body.append(cube((tail.pos[0],tail.pos[1]-1)))
elif dx == 0 and dy == -1:
self.body.append(cube((tail.pos[0],tail.pos[1]+1)))
self.body[-1].dirnx = dx
self.body[-1].dirny = dy
def draw(self, surface):
for i, c in enumerate(self.body):
if i ==0:
c.draw(surface, True)
else:
c.draw(surface)
#####
global width, rows, s, speed, timeout, AI
width = 400
rows = 10
s = snake((0, 255, 0), (2, 2))
speed = 20 # from 1 (painfully slow) to 1000 (impossibly fast)
timeout = 50
AI = True
#####
illegal_walls = []
Lboundary = []
Rboundary = []
Uboundary = []
Dboundary = []
Lboundary2 = []
Rboundary2 = []
Uboundary2 = []
Dboundary2 = []
for i in range(rows):
illegal_walls.append((i, -1)) #append -1 row
illegal_walls.append((i, rows)) #append bottom row
illegal_walls.append((-1, i)) #append -1 column
illegal_walls.append((rows, i)) #append rightmost column
Uboundary.append((i, 0))
Dboundary.append((i, rows-1))
Lboundary.append((0, i))
Rboundary.append((rows - 1, i))
Uboundary2.append((i, 1))
Dboundary2.append((i, rows-2))
Lboundary2.append((1, i))
Rboundary2.append((rows - 2, i))
def A_Star_Decider (snack_loc, s, width):
L_block = (s.body[0].pos[0]-1, s.body[0].pos[1])
R_block = (s.body[0].pos[0]+1, s.body[0].pos[1])
U_block = (s.body[0].pos[0], s.body[0].pos[1]-1)
D_block = (s.body[0].pos[0], s.body[0].pos[1]+1)
L = euc_dist(L_block, snack_loc)
R = euc_dist(R_block, snack_loc)
U = euc_dist(U_block, snack_loc)
D = euc_dist(D_block, snack_loc)
distances = [L, R, U, D]
options = [L_block, R_block, U_block, D_block]
# print("OPTIONS (LRUD):", options)
distances, options = zip(*sorted(zip(distances, options)))
distances = list(distances)
options = list(options)
# print("OPTIONS (min-dist):", options)
illegal_body = list(map(lambda z: z.pos, s.body[:]))
allowable = []
for i in range(len(options)):
if options[i] in illegal_body or options[i] in illegal_walls:
pass
else:
allowable.append(i)
# print ("HEAD: {}\t LENGTH: {}".format(s.body[0].pos, len(illegal_body)))
# # # # # print ("WALLS: {}".format(illegal_walls))
# # # # # print("Distances:", distances)
# # # # # print("Options:", options)
# print("ALLOWABLE (pre-second): {}".format(allowable))
direction = []
for i in range(len(allowable)):
if options[allowable[i]] == L_block:
if len(allowable) == 1 or second_analysis(L_block, illegal_body, illegal_walls) == 1:
direction.append(0)
else:
pass
elif options[allowable[i]] == R_block:
if len(allowable) == 1 or second_analysis(R_block, illegal_body, illegal_walls) == 1:
direction.append(1)
else:
pass
elif options[allowable[i]] == U_block:
if len(allowable) == 1 or second_analysis(U_block, illegal_body, illegal_walls) == 1:
direction.append(2)
else:
pass
elif options[allowable[i]] == D_block:
if len(allowable) == 1 or second_analysis(D_block, illegal_body, illegal_walls) == 1:
direction.append(3)
else:
pass
# print("DIRECTIONS: {}".format(direction)) # read as 0123 = LRUD
direction_final = []
for n in range(len(direction)):
boundary_count = 0
if direction[n] == 0:
if L_block in Lboundary:
for i in range(len(Lboundary2)):
if Lboundary2 in illegal_body:
boundary_count += 1
else:
pass
if 2*(boundary_count - 1) < len(illegal_body) and boundary_count == len(Lboundary):
pass
else:
direction_final.append(direction[n])
else:
direction_final.append(direction[n])
elif direction[n] == 1:
if R_block in Rboundary:
for i in range(len(Rboundary2)):
if Rboundary2 in illegal_body:
boundary_count += 1
else:
pass
if 2*(boundary_count - 1) < len(illegal_body) and boundary_count == len(Rboundary):
pass
else:
direction_final.append(direction[n])
else:
direction_final.append(direction[n])
elif direction[n] == 2:
if U_block in Uboundary:
for i in range(len(Uboundary2)):
if Uboundary2 in illegal_body:
boundary_count += 1
else:
pass
if 2*(boundary_count - 1) < len(illegal_body) and boundary_count == len(Uboundary):
pass
else:
direction_final.append(direction[n])
else:
direction_final.append(direction[n])
elif direction[n] == 3:
if D_block in Dboundary:
for i in range(len(Dboundary2)):
if Dboundary2 in illegal_body:
boundary_count += 1
else:
pass
if 2*(boundary_count - 1) < len(illegal_body) and boundary_count == len(Dboundary):
pass
else:
direction_final.append(direction[n])
else:
direction_final.append(direction[n])
# print("ALLOWABLE:", allowable)
# print("GOAL:", snack_loc)
# print("DIRECTION_post-wall: {}".format(direction_final)) # read as 0123 = LRUD
if len(direction_final) < 1:
terminate(0)
else:
# print("DIRECTION_final-call: {}\n".format(direction_final[0])) # read as 0123 = LRUD
return direction_final[0]
# # # # # # # # # # # # # # def hamilton():
def second_vision(square_tuple):
out = ((square_tuple[0]-1, square_tuple[1]),
(square_tuple[0]+1, square_tuple[1]),
(square_tuple[0], square_tuple[1]-1),
(square_tuple[0], square_tuple[1]+1)) #LRUD format
return out
def second_analysis(block, body, walls):
test = second_vision(block)
second_body = body[0:len(body)-2]
case = 0
for i in range(len(test)):
if test[i] in second_body or test[i] in walls:
case += 1
else:
pass
continue
# print(case)
if case > 3:
return 0
else:
return 1
def euc_dist (tup1, tup2):
out = ((tup2[0] - tup1[0])**2 + (tup2[1] - tup1[1])**2)**(0.5)
return out
def drawGrid(w, rows, surface):
sizeBtwn = w // rows
x = 0
y = 0
for l in range(rows):
x = x + sizeBtwn
y = y + sizeBtwn
pg.draw.line(surface, (255,255,255), (x,0),(x,w))
pg.draw.line(surface, (255,255,255), (0,y),(w,y))
def redrawWindow(surface):
surface.fill((0,0,0))
s.draw(surface)
snack.draw(surface)
drawGrid(width, rows, surface)
pg.display.update()
def goal(rows, item):
positions = item.body
while True:
x = rd.randrange(rows)
y = rd.randrange(rows)
if len(list(filter(lambda z: z.pos == (x,y), positions))) > 0:
continue
else:
break
return (x,y)
def message_box(subject, content):
root = tk.Tk()
root.attributes("-topmost", True)
root.withdraw()
messagebox.showinfo(subject, content)
try:
root.destroy()
except:
pass
def terminate (type):
s.body[-1].color = (0, 0, 255) ### color tail block blue
redrawWindow(win)
if len(s.body) > 20:
print('Score: {}'.format(len(s.body) - 1))
if type == 0:
message_box('Game Over!', 'You scored {} points! \nAnd then ran into something \nPress ENTER to close this window...'.format(len(s.body)-1))
s.reset((0,0))
elif type == 1:
message_box('Game Over!', 'You scored {} points! \nAnd then went too long without eating and starved :( \nPress ENTER to close this window...'.format(len(s.body)-1))
s.reset((0,0))
quit()
def win_game():
print('{},'.format(len(s.body) -1))
message_box('You Won!', 'You scored the max {} points and won the game! Press any key to play again...'.format(len(s.body)-1))
s.reset((0,0))
quit()
def game_start():
global snack, win
snack = cube(goal(rows, s), color=(255,0,0))
win = pg.display.set_mode((width, width))
flag = True
cycle_number = 0.0
clock = pg.time.Clock()
while flag:
pg.time.delay(1)
clock.tick(speed)
s.move(snack.pos)
if s.body[0].pos == snack.pos and len(s.body) != rows**2:
s.addCube()
snack = cube(goal(rows, s), color=(255, 0, 0))
cycle_number = 0
elif s.body[0].pos == snack.pos and len(s.body) == rows**2:
win_game()
cycle_number += 1
# print("Cycle number: {}\t Cycle limit: {}".format(cycle_number, timeout), flush=True)
body = []
for x in range(len(s.body)):
body.append(s.body[x].pos)
body.remove(body[0])
if s.head.pos in body:
terminate(0)
elif cycle_number > timeout:
terminate(1)
redrawWindow(win)
game_start()