diff --git a/data_eda.ipynb b/data_eda.ipynb
deleted file mode 100644
index 3622756..0000000
--- a/data_eda.ipynb
+++ /dev/null
@@ -1,1034 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 279,
- "metadata": {},
- "outputs": [],
- "source": [
- "import pandas as pd\n",
- "import numpy as np\n",
- "import re"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 280,
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/opt/anaconda3/envs/tongConsultinInc/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3508: DtypeWarning: Columns (3,13,14) have mixed types.Specify dtype option on import or set low_memory=False.\n",
- " exec(code_obj, self.user_global_ns, self.user_ns)\n"
- ]
- }
- ],
- "source": [
- "# Load the data\n",
- "routes = pd.read_csv('data/Flights.csv')\n",
- "ticket_price = pd.read_csv('data/Tickets.csv')\n",
- "airportsInfo = pd.read_csv('data/Airport_Codes.csv')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Flights\n",
- "- FL_DATE: string to stanarded datetime object\n",
- "- ORIGIN_CITY_NAME: split into city and state\n",
- "- DEST_CITY_NAME: split into city and state\n",
- "- AIR_TIME: \n",
- " - Two; NAN; negative number; number in str\n",
- "- DISTANCE: to float"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 281,
- "metadata": {},
- "outputs": [],
- "source": [
- "routes['FL_DATE'] = pd.to_datetime(routes['FL_DATE'])\n",
- "\n",
- "# \n",
- "routes['ORIGIN_STATE_NAME'] = routes['ORIGIN_CITY_NAME'].str.split(', ').str[1]\n",
- "routes['ORIGIN_CITY_NAME'] = routes['ORIGIN_CITY_NAME'].str.split(', ').str[0]\n",
- "routes['DEST_STATE_NAME'] = routes['DEST_CITY_NAME'].str.split(', ').str[1]\n",
- "routes['DEST_CITY_NAME'] = routes['DEST_CITY_NAME'].str.split(', ').str[0]\n",
- "\n",
- "# air time column adjustments\n",
- "routes['AIR_TIME'] = routes['AIR_TIME'].apply(lambda x: 2.0 if x == 'Two' else x)\n",
- "routes['AIR_TIME'] = routes['AIR_TIME'].apply(lambda x: np.nan if x == 'NAN' or x == '$$$' else x)\n",
- "routes['AIR_TIME'] = routes['AIR_TIME'].apply(lambda x: 121.0 if x == '121.0' else x)\n",
- "routes['AIR_TIME'] = routes['AIR_TIME'].astype(float)\n",
- "\n",
- "# clean and convert distance to float\n",
- "def distance_to_float(val):\n",
- " try:\n",
- " float_val = float(val)\n",
- " if float_val < 0:\n",
- " return -1 * float_val\n",
- " return float_val\n",
- " except:\n",
- " return np.nan\n",
- " \n",
- "routes['DISTANCE'] = routes['DISTANCE'].apply(distance_to_float)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 282,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " FL_DATE | \n",
- " OP_CARRIER | \n",
- " TAIL_NUM | \n",
- " OP_CARRIER_FL_NUM | \n",
- " ORIGIN_AIRPORT_ID | \n",
- " ORIGIN | \n",
- " ORIGIN_CITY_NAME | \n",
- " DEST_AIRPORT_ID | \n",
- " DESTINATION | \n",
- " DEST_CITY_NAME | \n",
- " DEP_DELAY | \n",
- " ARR_DELAY | \n",
- " CANCELLED | \n",
- " AIR_TIME | \n",
- " DISTANCE | \n",
- " OCCUPANCY_RATE | \n",
- " ORIGIN_STATE_NAME | \n",
- " DEST_STATE_NAME | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 2019-03-02 | \n",
- " WN | \n",
- " N955WN | \n",
- " 4591 | \n",
- " 14635 | \n",
- " RSW | \n",
- " Fort Myers | \n",
- " 11042 | \n",
- " CLE | \n",
- " Cleveland | \n",
- " -8.0 | \n",
- " -6.0 | \n",
- " 0.0 | \n",
- " 143.0 | \n",
- " 1025.0 | \n",
- " 0.970000 | \n",
- " FL | \n",
- " OH | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 2019-03-02 | \n",
- " WN | \n",
- " N8686A | \n",
- " 3231 | \n",
- " 14635 | \n",
- " RSW | \n",
- " Fort Myers | \n",
- " 11066 | \n",
- " CMH | \n",
- " Columbus | \n",
- " 1.0 | \n",
- " 5.0 | \n",
- " 0.0 | \n",
- " 135.0 | \n",
- " 930.0 | \n",
- " 0.550000 | \n",
- " FL | \n",
- " OH | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 2019-03-02 | \n",
- " WN | \n",
- " N201LV | \n",
- " 3383 | \n",
- " 14635 | \n",
- " RSW | \n",
- " Fort Myers | \n",
- " 11066 | \n",
- " CMH | \n",
- " Columbus | \n",
- " 0.0 | \n",
- " 4.0 | \n",
- " 0.0 | \n",
- " 132.0 | \n",
- " 930.0 | \n",
- " 0.910000 | \n",
- " FL | \n",
- " OH | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 2019-03-02 | \n",
- " WN | \n",
- " N413WN | \n",
- " 5498 | \n",
- " 14635 | \n",
- " RSW | \n",
- " Fort Myers | \n",
- " 11066 | \n",
- " CMH | \n",
- " Columbus | \n",
- " 11.0 | \n",
- " 14.0 | \n",
- " 0.0 | \n",
- " 136.0 | \n",
- " 930.0 | \n",
- " 0.670000 | \n",
- " FL | \n",
- " OH | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 2019-03-02 | \n",
- " WN | \n",
- " N7832A | \n",
- " 6933 | \n",
- " 14635 | \n",
- " RSW | \n",
- " Fort Myers | \n",
- " 11259 | \n",
- " DAL | \n",
- " Dallas | \n",
- " 0.0 | \n",
- " -17.0 | \n",
- " 0.0 | \n",
- " 151.0 | \n",
- " 1005.0 | \n",
- " 0.620000 | \n",
- " FL | \n",
- " TX | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 1915881 | \n",
- " 2019-03-23 | \n",
- " AA | \n",
- " N903NN | \n",
- " 1433 | \n",
- " 15370 | \n",
- " TUL | \n",
- " Tulsa | \n",
- " 11057 | \n",
- " CLT | \n",
- " Charlotte | \n",
- " -9.0 | \n",
- " -6.0 | \n",
- " 0.0 | \n",
- " 112.0 | \n",
- " NaN | \n",
- " 0.794884 | \n",
- " OK | \n",
- " NC | \n",
- "
\n",
- " \n",
- " 1915882 | \n",
- " 2019-03-24 | \n",
- " AA | \n",
- " N965AN | \n",
- " 1433 | \n",
- " 15370 | \n",
- " TUL | \n",
- " Tulsa | \n",
- " 11057 | \n",
- " CLT | \n",
- " Charlotte | \n",
- " -2.0 | \n",
- " -1.0 | \n",
- " 0.0 | \n",
- " 106.0 | \n",
- " NaN | \n",
- " 0.538399 | \n",
- " OK | \n",
- " NC | \n",
- "
\n",
- " \n",
- " 1915883 | \n",
- " 2019-03-25 | \n",
- " AA | \n",
- " N979NN | \n",
- " 1433 | \n",
- " 15370 | \n",
- " TUL | \n",
- " Tulsa | \n",
- " 11057 | \n",
- " CLT | \n",
- " Charlotte | \n",
- " -8.0 | \n",
- " -25.0 | \n",
- " 0.0 | \n",
- " 106.0 | \n",
- " NaN | \n",
- " 0.955579 | \n",
- " OK | \n",
- " NC | \n",
- "
\n",
- " \n",
- " 1915884 | \n",
- " 2019-03-26 | \n",
- " AA | \n",
- " N872NN | \n",
- " 1433 | \n",
- " 15370 | \n",
- " TUL | \n",
- " Tulsa | \n",
- " 11057 | \n",
- " CLT | \n",
- " Charlotte | \n",
- " -9.0 | \n",
- " -6.0 | \n",
- " 0.0 | \n",
- " 112.0 | \n",
- " NaN | \n",
- " 0.595344 | \n",
- " OK | \n",
- " NC | \n",
- "
\n",
- " \n",
- " 1915885 | \n",
- " 2019-03-27 | \n",
- " AA | \n",
- " N945AN | \n",
- " 1433 | \n",
- " 15370 | \n",
- " TUL | \n",
- " Tulsa | \n",
- " 11057 | \n",
- " CLT | \n",
- " Charlotte | \n",
- " -8.0 | \n",
- " 5.0 | \n",
- " 0.0 | \n",
- " 117.0 | \n",
- " NaN | \n",
- " 0.350192 | \n",
- " OK | \n",
- " NC | \n",
- "
\n",
- " \n",
- "
\n",
- "
1915886 rows × 18 columns
\n",
- "
"
- ],
- "text/plain": [
- " FL_DATE OP_CARRIER TAIL_NUM OP_CARRIER_FL_NUM ORIGIN_AIRPORT_ID \\\n",
- "0 2019-03-02 WN N955WN 4591 14635 \n",
- "1 2019-03-02 WN N8686A 3231 14635 \n",
- "2 2019-03-02 WN N201LV 3383 14635 \n",
- "3 2019-03-02 WN N413WN 5498 14635 \n",
- "4 2019-03-02 WN N7832A 6933 14635 \n",
- "... ... ... ... ... ... \n",
- "1915881 2019-03-23 AA N903NN 1433 15370 \n",
- "1915882 2019-03-24 AA N965AN 1433 15370 \n",
- "1915883 2019-03-25 AA N979NN 1433 15370 \n",
- "1915884 2019-03-26 AA N872NN 1433 15370 \n",
- "1915885 2019-03-27 AA N945AN 1433 15370 \n",
- "\n",
- " ORIGIN ORIGIN_CITY_NAME DEST_AIRPORT_ID DESTINATION DEST_CITY_NAME \\\n",
- "0 RSW Fort Myers 11042 CLE Cleveland \n",
- "1 RSW Fort Myers 11066 CMH Columbus \n",
- "2 RSW Fort Myers 11066 CMH Columbus \n",
- "3 RSW Fort Myers 11066 CMH Columbus \n",
- "4 RSW Fort Myers 11259 DAL Dallas \n",
- "... ... ... ... ... ... \n",
- "1915881 TUL Tulsa 11057 CLT Charlotte \n",
- "1915882 TUL Tulsa 11057 CLT Charlotte \n",
- "1915883 TUL Tulsa 11057 CLT Charlotte \n",
- "1915884 TUL Tulsa 11057 CLT Charlotte \n",
- "1915885 TUL Tulsa 11057 CLT Charlotte \n",
- "\n",
- " DEP_DELAY ARR_DELAY CANCELLED AIR_TIME DISTANCE OCCUPANCY_RATE \\\n",
- "0 -8.0 -6.0 0.0 143.0 1025.0 0.970000 \n",
- "1 1.0 5.0 0.0 135.0 930.0 0.550000 \n",
- "2 0.0 4.0 0.0 132.0 930.0 0.910000 \n",
- "3 11.0 14.0 0.0 136.0 930.0 0.670000 \n",
- "4 0.0 -17.0 0.0 151.0 1005.0 0.620000 \n",
- "... ... ... ... ... ... ... \n",
- "1915881 -9.0 -6.0 0.0 112.0 NaN 0.794884 \n",
- "1915882 -2.0 -1.0 0.0 106.0 NaN 0.538399 \n",
- "1915883 -8.0 -25.0 0.0 106.0 NaN 0.955579 \n",
- "1915884 -9.0 -6.0 0.0 112.0 NaN 0.595344 \n",
- "1915885 -8.0 5.0 0.0 117.0 NaN 0.350192 \n",
- "\n",
- " ORIGIN_STATE_NAME DEST_STATE_NAME \n",
- "0 FL OH \n",
- "1 FL OH \n",
- "2 FL OH \n",
- "3 FL OH \n",
- "4 FL TX \n",
- "... ... ... \n",
- "1915881 OK NC \n",
- "1915882 OK NC \n",
- "1915883 OK NC \n",
- "1915884 OK NC \n",
- "1915885 OK NC \n",
- "\n",
- "[1915886 rows x 18 columns]"
- ]
- },
- "execution_count": 282,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "routes"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Tickets\n",
- "- YEAR to int\n",
- "- clean itin_fare"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 283,
- "metadata": {},
- "outputs": [],
- "source": [
- "# year column to int year\n",
- "ticket_price['YEAR'] = ticket_price['YEAR'].astype(int)\n",
- "\n",
- "# clean and convert price to float\n",
- "def find_number(text):\n",
- " if type(text) != str:\n",
- " return np.nan\n",
- " re_result = re.search(r'[\\d\\.]+', text)\n",
- " if re_result is not None:\n",
- " return float(re_result.group(0))\n",
- " return np.nan\n",
- "\n",
- "ticket_price['ITIN_FARE'] = ticket_price['ITIN_FARE'].apply(find_number)\n",
- "\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 284,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " ITIN_ID | \n",
- " YEAR | \n",
- " QUARTER | \n",
- " ORIGIN | \n",
- " ORIGIN_COUNTRY | \n",
- " ORIGIN_STATE_ABR | \n",
- " ORIGIN_STATE_NM | \n",
- " ROUNDTRIP | \n",
- " REPORTING_CARRIER | \n",
- " PASSENGERS | \n",
- " ITIN_FARE | \n",
- " DESTINATION | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 201912723049 | \n",
- " 2019 | \n",
- " 1 | \n",
- " ABI | \n",
- " US | \n",
- " TX | \n",
- " Texas | \n",
- " 1.0 | \n",
- " MQ | \n",
- " 1.0 | \n",
- " 736.0 | \n",
- " DAB | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 201912723085 | \n",
- " 2019 | \n",
- " 1 | \n",
- " ABI | \n",
- " US | \n",
- " TX | \n",
- " Texas | \n",
- " 1.0 | \n",
- " MQ | \n",
- " 1.0 | \n",
- " 570.0 | \n",
- " COS | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 201912723491 | \n",
- " 2019 | \n",
- " 1 | \n",
- " ABI | \n",
- " US | \n",
- " TX | \n",
- " Texas | \n",
- " 1.0 | \n",
- " MQ | \n",
- " 1.0 | \n",
- " 564.0 | \n",
- " MCO | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 201912723428 | \n",
- " 2019 | \n",
- " 1 | \n",
- " ABI | \n",
- " US | \n",
- " TX | \n",
- " Texas | \n",
- " 1.0 | \n",
- " MQ | \n",
- " 1.0 | \n",
- " 345.0 | \n",
- " LGA | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 201912723509 | \n",
- " 2019 | \n",
- " 1 | \n",
- " ABI | \n",
- " US | \n",
- " TX | \n",
- " Texas | \n",
- " 0.0 | \n",
- " MQ | \n",
- " 1.0 | \n",
- " 309.0 | \n",
- " MGM | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 1167280 | \n",
- " 201911284909 | \n",
- " 2019 | \n",
- " 1 | \n",
- " YAK | \n",
- " US | \n",
- " AK | \n",
- " Alaska | \n",
- " 0.0 | \n",
- " AS | \n",
- " 1.0 | \n",
- " 244.0 | \n",
- " ANC | \n",
- "
\n",
- " \n",
- " 1167281 | \n",
- " 201911284959 | \n",
- " 2019 | \n",
- " 1 | \n",
- " YAK | \n",
- " US | \n",
- " AK | \n",
- " Alaska | \n",
- " 1.0 | \n",
- " AS | \n",
- " 1.0 | \n",
- " 371.0 | \n",
- " JNU | \n",
- "
\n",
- " \n",
- " 1167282 | \n",
- " 201911284940 | \n",
- " 2019 | \n",
- " 1 | \n",
- " YAK | \n",
- " US | \n",
- " AK | \n",
- " Alaska | \n",
- " 0.0 | \n",
- " AS | \n",
- " 1.0 | \n",
- " 271.0 | \n",
- " JNU | \n",
- "
\n",
- " \n",
- " 1167283 | \n",
- " 201911284914 | \n",
- " 2019 | \n",
- " 1 | \n",
- " YAK | \n",
- " US | \n",
- " AK | \n",
- " Alaska | \n",
- " 0.0 | \n",
- " AS | \n",
- " 1.0 | \n",
- " 603.0 | \n",
- " ANC | \n",
- "
\n",
- " \n",
- " 1167284 | \n",
- " 201911284952 | \n",
- " 2019 | \n",
- " 1 | \n",
- " YAK | \n",
- " US | \n",
- " AK | \n",
- " Alaska | \n",
- " 1.0 | \n",
- " AS | \n",
- " 1.0 | \n",
- " 299.0 | \n",
- " JNU | \n",
- "
\n",
- " \n",
- "
\n",
- "
1167285 rows × 12 columns
\n",
- "
"
- ],
- "text/plain": [
- " ITIN_ID YEAR QUARTER ORIGIN ORIGIN_COUNTRY ORIGIN_STATE_ABR \\\n",
- "0 201912723049 2019 1 ABI US TX \n",
- "1 201912723085 2019 1 ABI US TX \n",
- "2 201912723491 2019 1 ABI US TX \n",
- "3 201912723428 2019 1 ABI US TX \n",
- "4 201912723509 2019 1 ABI US TX \n",
- "... ... ... ... ... ... ... \n",
- "1167280 201911284909 2019 1 YAK US AK \n",
- "1167281 201911284959 2019 1 YAK US AK \n",
- "1167282 201911284940 2019 1 YAK US AK \n",
- "1167283 201911284914 2019 1 YAK US AK \n",
- "1167284 201911284952 2019 1 YAK US AK \n",
- "\n",
- " ORIGIN_STATE_NM ROUNDTRIP REPORTING_CARRIER PASSENGERS ITIN_FARE \\\n",
- "0 Texas 1.0 MQ 1.0 736.0 \n",
- "1 Texas 1.0 MQ 1.0 570.0 \n",
- "2 Texas 1.0 MQ 1.0 564.0 \n",
- "3 Texas 1.0 MQ 1.0 345.0 \n",
- "4 Texas 0.0 MQ 1.0 309.0 \n",
- "... ... ... ... ... ... \n",
- "1167280 Alaska 0.0 AS 1.0 244.0 \n",
- "1167281 Alaska 1.0 AS 1.0 371.0 \n",
- "1167282 Alaska 0.0 AS 1.0 271.0 \n",
- "1167283 Alaska 0.0 AS 1.0 603.0 \n",
- "1167284 Alaska 1.0 AS 1.0 299.0 \n",
- "\n",
- " DESTINATION \n",
- "0 DAB \n",
- "1 COS \n",
- "2 MCO \n",
- "3 LGA \n",
- "4 MGM \n",
- "... ... \n",
- "1167280 ANC \n",
- "1167281 JNU \n",
- "1167282 JNU \n",
- "1167283 ANC \n",
- "1167284 JNU \n",
- "\n",
- "[1167285 rows x 12 columns]"
- ]
- },
- "execution_count": 284,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "ticket_price"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## AirportsInfo\n",
- "- COORDINATES into atomic data set\n",
- " - first one is longitude\n",
- " - second one is latitude"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 285,
- "metadata": {},
- "outputs": [],
- "source": [
- "# clean coordinates\n",
- "\n",
- "airportsInfo['COORDINATES_LONGITUDE'] = airportsInfo['COORDINATES'].apply(lambda x: x.split(', ')[0]).astype(float)\n",
- "airportsInfo['COORDINATES_LATITUDE'] = airportsInfo['COORDINATES'].apply(lambda x: x.split(', ')[1]).astype(float)\n",
- "airportsInfo.drop(columns=['COORDINATES'], inplace=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 286,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n",
- "RangeIndex: 55369 entries, 0 to 55368\n",
- "Data columns (total 9 columns):\n",
- " # Column Non-Null Count Dtype \n",
- "--- ------ -------------- ----- \n",
- " 0 TYPE 55369 non-null object \n",
- " 1 NAME 55369 non-null object \n",
- " 2 ELEVATION_FT 48354 non-null float64\n",
- " 3 CONTINENT 27526 non-null object \n",
- " 4 ISO_COUNTRY 55122 non-null object \n",
- " 5 MUNICIPALITY 49663 non-null object \n",
- " 6 IATA_CODE 9182 non-null object \n",
- " 7 COORDINATES_LONGITUDE 55369 non-null float64\n",
- " 8 COORDINATES_LATITUDE 55369 non-null float64\n",
- "dtypes: float64(3), object(6)\n",
- "memory usage: 3.8+ MB\n"
- ]
- }
- ],
- "source": [
- "airportsInfo.info()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 287,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " TYPE | \n",
- " NAME | \n",
- " ELEVATION_FT | \n",
- " CONTINENT | \n",
- " ISO_COUNTRY | \n",
- " MUNICIPALITY | \n",
- " IATA_CODE | \n",
- " COORDINATES_LONGITUDE | \n",
- " COORDINATES_LATITUDE | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " heliport | \n",
- " Total Rf Heliport | \n",
- " 11.0 | \n",
- " NaN | \n",
- " US | \n",
- " Bensalem | \n",
- " NaN | \n",
- " -74.933601 | \n",
- " 40.070801 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " small_airport | \n",
- " Aero B Ranch Airport | \n",
- " 3435.0 | \n",
- " NaN | \n",
- " US | \n",
- " Leoti | \n",
- " NaN | \n",
- " -101.473911 | \n",
- " 38.704022 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " small_airport | \n",
- " Lowell Field | \n",
- " 450.0 | \n",
- " NaN | \n",
- " US | \n",
- " Anchor Point | \n",
- " NaN | \n",
- " -151.695999 | \n",
- " 59.949200 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " small_airport | \n",
- " Epps Airpark | \n",
- " 820.0 | \n",
- " NaN | \n",
- " US | \n",
- " Harvest | \n",
- " NaN | \n",
- " -86.770302 | \n",
- " 34.864799 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " closed | \n",
- " Newport Hospital & Clinic Heliport | \n",
- " 237.0 | \n",
- " NaN | \n",
- " US | \n",
- " Newport | \n",
- " NaN | \n",
- " -91.254898 | \n",
- " 35.608700 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 55364 | \n",
- " medium_airport | \n",
- " Yingkou Lanqi Airport | \n",
- " 0.0 | \n",
- " AS | \n",
- " CN | \n",
- " Yingkou | \n",
- " YKH | \n",
- " 122.358600 | \n",
- " 40.542524 | \n",
- "
\n",
- " \n",
- " 55365 | \n",
- " medium_airport | \n",
- " Shenyang Dongta Airport | \n",
- " NaN | \n",
- " AS | \n",
- " CN | \n",
- " Shenyang | \n",
- " NaN | \n",
- " 123.496002 | \n",
- " 41.784401 | \n",
- "
\n",
- " \n",
- " 55366 | \n",
- " heliport | \n",
- " Sealand Helipad | \n",
- " 40.0 | \n",
- " EU | \n",
- " GB | \n",
- " Sealand | \n",
- " NaN | \n",
- " 1.482500 | \n",
- " 51.894444 | \n",
- "
\n",
- " \n",
- " 55367 | \n",
- " small_airport | \n",
- " Glorioso Islands Airstrip | \n",
- " 11.0 | \n",
- " AF | \n",
- " TF | \n",
- " Grande Glorieuse | \n",
- " NaN | \n",
- " 47.296389 | \n",
- " -11.584278 | \n",
- "
\n",
- " \n",
- " 55368 | \n",
- " small_airport | \n",
- " Satsuma IÅjima Airport | \n",
- " 338.0 | \n",
- " AS | \n",
- " JP | \n",
- " Mishima-Mura | \n",
- " NaN | \n",
- " 130.270556 | \n",
- " 30.784722 | \n",
- "
\n",
- " \n",
- "
\n",
- "
55369 rows × 9 columns
\n",
- "
"
- ],
- "text/plain": [
- " TYPE NAME ELEVATION_FT \\\n",
- "0 heliport Total Rf Heliport 11.0 \n",
- "1 small_airport Aero B Ranch Airport 3435.0 \n",
- "2 small_airport Lowell Field 450.0 \n",
- "3 small_airport Epps Airpark 820.0 \n",
- "4 closed Newport Hospital & Clinic Heliport 237.0 \n",
- "... ... ... ... \n",
- "55364 medium_airport Yingkou Lanqi Airport 0.0 \n",
- "55365 medium_airport Shenyang Dongta Airport NaN \n",
- "55366 heliport Sealand Helipad 40.0 \n",
- "55367 small_airport Glorioso Islands Airstrip 11.0 \n",
- "55368 small_airport Satsuma IÅjima Airport 338.0 \n",
- "\n",
- " CONTINENT ISO_COUNTRY MUNICIPALITY IATA_CODE \\\n",
- "0 NaN US Bensalem NaN \n",
- "1 NaN US Leoti NaN \n",
- "2 NaN US Anchor Point NaN \n",
- "3 NaN US Harvest NaN \n",
- "4 NaN US Newport NaN \n",
- "... ... ... ... ... \n",
- "55364 AS CN Yingkou YKH \n",
- "55365 AS CN Shenyang NaN \n",
- "55366 EU GB Sealand NaN \n",
- "55367 AF TF Grande Glorieuse NaN \n",
- "55368 AS JP Mishima-Mura NaN \n",
- "\n",
- " COORDINATES_LONGITUDE COORDINATES_LATITUDE \n",
- "0 -74.933601 40.070801 \n",
- "1 -101.473911 38.704022 \n",
- "2 -151.695999 59.949200 \n",
- "3 -86.770302 34.864799 \n",
- "4 -91.254898 35.608700 \n",
- "... ... ... \n",
- "55364 122.358600 40.542524 \n",
- "55365 123.496002 41.784401 \n",
- "55366 1.482500 51.894444 \n",
- "55367 47.296389 -11.584278 \n",
- "55368 130.270556 30.784722 \n",
- "\n",
- "[55369 rows x 9 columns]"
- ]
- },
- "execution_count": 287,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "airportsInfo"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "tongConsultinInc",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.19"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/impact_evaluation/eda_average_ticketPrice.ipynb b/impact_evaluation/eda_average_ticketPrice.ipynb
new file mode 100644
index 0000000..409150b
--- /dev/null
+++ b/impact_evaluation/eda_average_ticketPrice.ipynb
@@ -0,0 +1,276 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## eval_impact_of_tickets_associations"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 200,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 201,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Load data\n",
+ "\n",
+ "tickets = pd.read_csv('../data/cleaned_data/Tickets.csv').dropna()\n",
+ "ignore_column_tickets = ['ITIN_ID', 'YEAR', 'QUARTER', 'ORIGIN_COUNTRY', 'ORIGIN_STATE_ABR', 'ORIGIN_STATE_NM', 'ROUNDTRIP']\n",
+ "# tickets = tickets.drop(columns=ignore_column_tickets)\n",
+ "# # remove tickets that visit airports outside of the US\n",
+ "# tickets = tickets[(tickets['DEST_AIRPORT_IATA'].isin(airports['IATA_CODE'])) & (tickets['ORIGIN_AIRPORT_IATA'].isin(airports['IATA_CODE']))]\n",
+ "# tickets = tickets.assign(sorted_route = tickets.apply(lambda x : tuple(sorted([x['ORIGIN_AIRPORT_IATA'], x['DEST_AIRPORT_IATA']])), axis=1))\n",
+ "# tickets = tickets.drop(['ORIGIN_AIRPORT_IATA', 'DEST_AIRPORT_IATA'], axis=1)\n",
+ "\n",
+ "tickets = tickets.assign(\n",
+ " sorted_route=tickets.apply(\n",
+ " lambda x: tuple(\n",
+ " sorted([x[\"ORIGIN_AIRPORT_IATA_CODE\"], x[\"DEST_AIRPORT_IATA_CODE\"]])\n",
+ " ),\n",
+ " axis=1,\n",
+ " )\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Checking how many tickets associated with each round-trip routes\n",
+ "\n",
+ "It is critical to check the number of tickets associated with the round trip routes because we calculate average ticket price based on the ticket associated with each round trip route. Specially for round-trip routes associated with only a single ticket, the analysis would be highly biased if we only rely on a single ticket for that round-trip route"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 202,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "roundtrip_route_distribution = tickets.groupby('sorted_route')['ITIN_ID'].count().value_counts(normalize=True)\n",
+ "roundtrip_route_distributions_more_than_10 = roundtrip_route_distribution[roundtrip_route_distribution.index > 9].sum()\n",
+ "roundtrip_route_distribution = roundtrip_route_distribution.reset_index().loc[:8]\n",
+ "roundtrip_route_distribution.loc[9] = {'index' : '10 or more', 'ITIN_ID' : roundtrip_route_distributions_more_than_10}\n",
+ "roundtrip_route_distribution.columns = ['# of tickets on roundtrip route', 'Percetange of roundtrip routes']\n",
+ "\n",
+ "roundtrip_route_distribution['# of tickets on roundtrip route'] = pd.Series(['1 ticket', '2 tickets', '3 tickets', '4 tickets', '5 tickets', '6 tickets', '7 tickets', '8 tickets', '9 tickets', '10 or more'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 240,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq8AAAH2CAYAAABeCGU/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADIgklEQVR4nOzdd3gUVfcH8O9s3+ym956QhCRAgNAJvVcFFKWoFBXBxg8V66sQlKKo2F4RXlEQhIAFkBppgvQeIHRID+m97WbL/f0Rs7Kkk01mNzmf5+HRzMzeObM7M3t25tw7HGOMgRBCCCGEEAsg4DsAQgghhBBC6ouSV0IIIYQQYjEoeSWEEEIIIRaDkldCCCGEEGIxKHklhBBCCCEWg5JXQgghhBBiMSh5JYQQQgghFoOSV0IIIYQQYjEoeSWEEEIIIRajQcnrunXrwHGc4Z9MJoObmxsGDRqEZcuWITMzs8prIiMjwXFcg4IqLS1FZGQkDh8+3KDXVbcuPz8/jB07tkHt1GXTpk348ssvq53HcRwiIyNNuj5TO3jwILp16waFQgGO47B9+3a+QzKJGTNmwM/Pz/C3KfcjS7Jy5UqsW7eO7zAabc+ePWZ/LN0vISEBHMc1+3tfeV5OSEiodbkZM2ZAqVQ2eTw17X+HDx8Gx3H47bffmjwGc8RxHF555RW+w6iX8vJyzJkzB+7u7hAKhejcuTPfITXYwIEDMXDgwCZrv7Y8oLH8/PwwY8aMWpep7futvueEB5nyHHHv3j1ERkYiJibGJO09SPQwL1q7di1CQkKg0WiQmZmJY8eO4ZNPPsFnn32GLVu2YOjQoYZln3/+eYwcObJB7ZeWlmLRokUA0KCd72HW9TA2bdqE2NhYzJs3r8q8kydPwsvLq8ljeFiMMTz55JNo27YtduzYAYVCgeDgYL7DahLmvh81lZUrV8LJyanOk5+527NnD7799luLSWDd3d1x8uRJBAQE8B0Kr1rK/teafffdd1i9ejW++eYbdO3atVl+9JjaypUrm7T92vKA5lDb99uYMWNw8uRJuLu78xBZhXv37mHRokXw8/Nrkh8/D5W8dujQAd26dTP8/fjjj+O1115D37598dhjj+H27dtwdXUFAHh5eTV5MldaWgorK6tmWVddevXqxev663Lv3j3k5uZiwoQJGDJkSINfr9FowHEcRKKH2nXMWnPuR4wxqFQqyOXyJl0PaXo6nQ5arRZSqdTsj3/Sst2/LzZGbGws5HK5xVwprk67du34DoE3zs7OcHZ25juMJmWymlcfHx98/vnnKCoqwurVqw3Tq7sFe+jQIQwcOBCOjo6Qy+Xw8fHB448/jtLSUiQkJBje9EWLFhlKFCp/xVe2d+HCBUycOBH29vaGKx213e7dtm0bOnbsCJlMhjZt2uDrr782ml/TZfbKW12Vl+YHDhyI3bt3IzEx0aiEolJ1ZQOxsbEYN24c7O3tIZPJ0LlzZ/z000/VricqKgr/+c9/4OHhARsbGwwdOhQ3b96s+Y2/z7FjxzBkyBBYW1vDysoKERER2L17t2F+ZGSkISl7++23wXGc0W32B1XGtGHDBrzxxhvw9PSEVCrFnTt3AAA//vgjOnXqBJlMBgcHB0yYMAHXr183aqOmWzcP3uKvvOX62WefYcWKFfD394dSqUTv3r1x6tSpKq9ft24dgoODIZVKERoaivXr1xvNN/V+VFl+Utd+VJPKW4arVq1CaGgopFKpYR+o63OrKabK9+H+/dbPzw9Xr17FkSNHDNt8//tcWFiI+fPnw9/fHxKJBJ6enpg3bx5KSkqM2v3111/Rs2dP2NrawsrKCm3atMGzzz5b53bq9Xp888036Ny5M+RyOezs7NCrVy/s2LHDsMyWLVswfPhwuLu7Qy6XIzQ0FO+8845RDDNmzMC3335reO8q/1VuJ2MMK1euNKzH3t4eEydORFxcnFE8jDEsXboUvr6+kMlk6NatG/bv31/tfpmUlISnn34aLi4uhv3q888/h16vNyxTuZ8uX74cixcvhr+/P6RSKf76669qywbuj/3Bf/efa86dO4dHH30UDg4OkMlkCA8Pxy+//FLl/T116hT69OkDmUwGDw8PvPvuu9BoNHV+Lve7evUqhgwZAoVCAWdnZ7zyyisoLS01zB8yZAhCQkLAGKvyXgYGBmLMmDE1tl3X/gdU/ACuzznuwIEDGDJkCGxsbGBlZYU+ffrg4MGDdW5fQ86lNd2efXD/qGxz06ZNePvtt+Hu7g6lUolHHnkEGRkZKCoqwgsvvAAnJyc4OTlh5syZKC4urja+1atXo23btpBKpWjXrh02b95cZZn09HTMnj0bXl5ekEgk8Pf3x6JFi6DVag3L1LYv1kSlUuHdd981Ov5ffvll5OfnG5bhOA5r1qxBWVmZ4TOsrRRm//79GDduHLy8vCCTyRAYGIjZs2cjOzvbaLmsrCy88MIL8Pb2hlQqhbOzM/r06YMDBw4Ylrl48SLGjh1rOAY9PDwwZswYpKSkNGgbgOq/e9RqNT788EOEhoZCJpPB0dERgwYNwokTJwzLfPvtt+jfvz9cXFygUCgQFhaG5cuXGx1ndeUB5eXlWLx4MUJCQgzbOnPmTGRlZRnFo9Fo8NZbb8HNzQ1WVlbo27cvzpw5U+N7Xamu77ea8pno6GgMGTLEcF4PDQ3FsmXLal3X8ePH4eTkhLFjxxrO0bdv38bUqVONzpWV52ug4njp3r07AGDmzJmG+Cpzo7i4OEyePBkeHh6QSqVwdXXFkCFDGlZiwBpg7dq1DAA7e/ZstfOLi4uZUChkQ4YMMUxbuHAhu3818fHxTCaTsWHDhrHt27ezw4cPs40bN7JnnnmG5eXlMZVKxaKjoxkA9txzz7GTJ0+ykydPsjt37hi15+vry95++222f/9+tn379mrXxRhjvr6+zNPTk/n4+LAff/yR7dmzhz311FMMAPv000+rbFt8fLzR6//66y8GgP3111+MMcauXr3K+vTpw9zc3AyxnTx50rA8ALZw4ULD3zdu3GDW1tYsICCArV+/nu3evZtNmTKFAWCffPJJlfX4+fmxp556iu3evZtFRUUxHx8fFhQUxLRaba2fzeHDh5lYLGZdu3ZlW7ZsYdu3b2fDhw9nHMexzZs3M8YYS05OZlu3bmUA2KuvvspOnjzJLly4UGOblTF5enqyiRMnsh07drBdu3axnJwctnTpUgaATZkyhe3evZutX7+etWnThtna2rJbt24Z2hgwYAAbMGBAlbanT5/OfH19DX/Hx8cbtn/kyJFs+/btbPv27SwsLIzZ29uz/Px8w7KVn9W4cePYzp072c8//8wCAwOZt7e3oU2+9qOaVL6PHTt2ZJs2bWKHDh1isbGx9frcaorp/veicr+9cOECa9OmDQsPDzdsc+VnXFJSwjp37sycnJzYihUr2IEDB9hXX33FbG1t2eDBg5ler2eMMXbixAnGcRybPHky27NnDzt06BBbu3Yte+aZZ+rczmeeeYZxHMeef/559scff7C9e/eyJUuWsK+++sqwzEcffcS++OILtnv3bnb48GG2atUq5u/vzwYNGmRY5s6dO2zixIkMgNFxplKpGGOMzZo1i4nFYvbGG2+w6OhotmnTJhYSEsJcXV1Zenq6oZ13332XAWAvvPACi46OZt9//z3z8fFh7u7uRvtlZmYm8/T0ZM7OzmzVqlUsOjqavfLKKwwAe/HFFw3LVe6nnp6ebNCgQey3335j+/btY/Hx8YZ5a9euNSx/f+wnT55khw4dYp6enszNzY0VFBQwxhg7dOgQk0gkrF+/fmzLli0sOjqazZgxo0pbV69eZVZWVqxdu3YsKiqK/fHHH2zEiBHMx8en2nPXg6ZPn84kEgnz8fFhS5YsYfv27WORkZFMJBKxsWPHGpb7448/GAC2f/9+o9fv3r2bAWC7d++ucR217X8NOcdt2LCBcRzHxo8fz7Zu3cp27tzJxo4dy4RCITtw4ECt29mQ9fj6+rLp06dXaePB81Zlm76+vmzGjBksOjqarVq1iimVSjZo0CA2bNgwNn/+fLZv3z72ySefMKFQyF599VWjNgEwb29vw+e3Y8cONnLkSAaA/frrr4bl0tLSDOey1atXswMHDrCPPvqISaVSNmPGDMNyte2L1dHr9WzEiBFMJBKxDz74gO3bt4999tlnTKFQsPDwcMOxdfLkSTZ69Ggml8sNn2FmZmaN7/d3333Hli1bxnbs2MGOHDnCfvrpJ9apUycWHBzMysvLDcuNGDGCOTs7s//973/s8OHDbPv27WzBggWG81xxcTFzdHRk3bp1Y7/88gs7cuQI27JlC5szZw67du1ag7ahus9Qo9GwQYMGMZFIxObPn8/27NnDduzYwd577z0WFRVlWO61115j3333HYuOjmaHDh1iX3zxBXNycmIzZ840LFNbHqDT6djIkSOZQqFgixYtYvv372dr1qxhnp6erF27dqy0tNTQzvTp0xnHcezNN99k+/btYytWrGCenp7Mxsam2v2yUl3fb9XlM2vWrGEcx7GBAweyTZs2sQMHDrCVK1eyl156ySgehUJh+HvLli1MKpWyF1980XDcXL16ldna2rKwsDC2fv16tm/fPvbGG28wgUDAIiMjGWOMFRQUGGJ4//33DfElJyczxhgLDg5mgYGBbMOGDezIkSPs999/Z2+88YYhz6oPkyavjDHm6urKQkNDDX8/+KX722+/MQAsJiamxjaysrKqJIEPtrdgwYIa593P19eXcRxXZX3Dhg1jNjY2rKSkxGjb6kpeGWNszJgxRonX/R6Me/LkyUwqlbKkpCSj5UaNGsWsrKwMSVnlekaPHm203C+//GL4Aq9Nr169mIuLCysqKjJM02q1rEOHDszLy8uQmFSe8OqTcFXG1L9/f6PpeXl5TC6XV4k1KSmJSaVSNnXqVMO0hiavYWFhRl8uZ86cYQAMJxedTsc8PDxYly5dDNvEGGMJCQlMLBYbtcnHflQTAMzW1pbl5uYaTa/v51bf5JUxxtq3b1/te75s2TImEAiqHL+Vx+SePXsYY4x99tlnDIDRD4b6+PvvvxkA9p///Kfer9Hr9Uyj0bAjR44wAOzSpUuGeS+//HK123zy5EkGgH3++edG05OTk5lcLmdvvfUWY4yx3NxcJpVK2aRJk6p9/f3v0TvvvMMAsNOnTxst++KLLzKO49jNmzcZY//upwEBAUZfzPfPuz/hvJ9Wq2Xjxo1jSqWSnT9/3jA9JCSEhYeHM41GY7T82LFjmbu7O9PpdIwxxiZNmsTkcrlRcq7VallISEi9k1cARj8kGGNsyZIlDAA7duwYY6ziGGvTpg0bN26c0XKjRo1iAQEBRsdddWra/+p7jispKWEODg7skUceMVpOp9OxTp06sR49etS6/oacSxuavD4Y07x58xgANnfuXKPp48ePZw4ODkbTANT4+QUGBhqmzZ49mymVSpaYmGj0+srj8urVq4yx2vfF6lQmO8uXLzeavmXLFgaA/e9//zNMezCJqa/K4zkxMZEBYH/88YdhnlKpZPPmzavxtefOnWMADBcRGrsND36G69evZwDY999/X+/t0el0TKPRsPXr1zOhUGh0/q4pD4iKimIA2O+//240/ezZswwAW7lyJWOMsevXrzMA7LXXXjNabuPGjQxArckrY7V/vz34vVBUVMRsbGxY3759az1+7//cP/74YyYUCo0usjFW8SPEy8vL8OO70iuvvMJkMpnhParc3gfPh9nZ2QwA+/LLL2vdvrqYfKgs9sCtpgd17twZEokEL7zwAn766acqt/nq6/HHH6/3su3bt0enTp2Mpk2dOhWFhYW4cOHCQ62/vg4dOoQhQ4bA29vbaPqMGTNQWlqKkydPGk1/9NFHjf7u2LEjACAxMbHGdZSUlOD06dOYOHGiUWG9UCjEM888g5SUlHqXHlTnwff65MmTKCsrq3K7zdvbG4MHD67Xrb2ajBkzBkKh0PD3g9t/8+ZN3Lt3D1OnTjW6TePr64uIiIgGr68596PBgwfD3t7e8HdTf24P2rVrFzp06IDOnTtDq9Ua/o0YMcKoNKbyds+TTz6JX375BampqfVqf+/evQCAl19+udbl4uLiMHXqVLi5uUEoFEIsFmPAgAEAUKXspKbt4DgOTz/9tNF2uLm5oVOnTobtOHXqFNRqNZ588kmj1/fq1avKrexDhw6hXbt26NGjh9H0GTNmgDGGQ4cOGU1/9NFHIRaL64z1fq+88gp2796NX3/9FV26dAEA3LlzBzdu3MBTTz0FAEbbM3r0aKSlpRn2gb/++gtDhgwx9CcAKvaVSZMmNSiOynVVmjp1qqF9ABAIBHjllVewa9cuJCUlAQDu3r2L6OhovPTSS40eiaOuc9yJEyeQm5uL6dOnG70fer0eI0eOxNmzZ6uUuTzMeh7GgyPXhIaGAkCVUorQ0FDk5uZWKR2o6fO7c+eO4db4rl27MGjQIHh4eBht/6hRowAAR44cMWqzvvti5T784Hn7iSeegEKheOjzdmZmJubMmQNvb2+IRCKIxWL4+voCMD6ee/TogXXr1mHx4sU4depUlXKXwMBA2Nvb4+2338aqVatw7do1k27D3r17IZPJ6ix/unjxIh599FE4Ojoazk/Tpk2DTqfDrVu3an0tUPH52dnZ4ZFHHjH6/Dp37gw3NzfD+anyeHvweHzyySdN3qfkxIkTKCwsrNfxyxjD7NmzsXDhQmzatAlvvfWWYZ5KpcLBgwcxYcIEWFlZVTlfqVSqasv87ufg4ICAgAB8+umnWLFiBS5evGhUmlVfJk1eS0pKkJOTAw8PjxqXCQgIwIEDB+Di4oKXX34ZAQEBCAgIwFdffdWgdTWkF52bm1uN03Jychq03obKycmpNtbK9+jB9Ts6Ohr9XVl4X1ZWVuM68vLywBhr0Hoa4sF2K9uqaX2NWVdd21/Zdm2faUM053704Lqa+nN7UEZGBi5fvgyxWGz0z9raGowxQ41a//79sX37dmi1WkybNg1eXl7o0KEDoqKiam0/KysLQqGw1s+huLgY/fr1w+nTp7F48WIcPnwYZ8+exdatWwHUvp/fvx2MMbi6ulbZllOnThm2o/K9uz9ZqPTgtIYepw3txbt48WKsWrUKq1evNhrJIiMjAwAwf/78Ktvy0ksvAYDR9jR2vxeJRFWOser24WeffRZyuRyrVq0CUFEHKJfL61X3XJe6jvHK92TixIlV3pNPPvkEjDHk5uY2ej0Pw8HBwehviURS63SVSmU0vT7nkIyMDOzcubPKtrdv3x4AqtSS1ndfzMnJgUgkqtKRh+M4uLm5PdS5Rq/XY/jw4di6dSveeustHDx4EGfOnDEkMPe/11u2bMH06dOxZs0a9O7dGw4ODpg2bRrS09MBALa2tjhy5Ag6d+6M9957D+3bt4eHhwcWLlxoSHQbsw1ZWVnw8PCAQFBz2pOUlIR+/fohNTUVX331FY4ePYqzZ88a6jnre37Kz8+HRCKp8hmmp6dXOT89uE9Ud4w2VmWtbX06IpeXl2PLli1o37694QdTpZycHGi1WnzzzTdVtm306NEAqu6fD+I4DgcPHsSIESOwfPlydOnSBc7Ozpg7dy6KiorqvU0mTe93794NnU5X57BE/fr1Q79+/aDT6XDu3Dl88803mDdvHlxdXTF58uR6rashv/4rD47qplXuJDKZDEBFQff96vog6uLo6Ii0tLQq0+/duwcAcHJyalT7AGBvbw+BQNBk63nwva58z2pa3/3rkslkKCgoqLLcw76vleuu7TNtCFPvRw1ZV0M+t/v3z/t7EjfkfXRycoJcLsePP/5Y4/xK48aNw7hx46BWq3Hq1CksW7YMU6dOhZ+fH3r37l3t652dnaHT6ZCenl7jF+qhQ4dw7949HD582HC1FUCVzhZ1bQfHcTh69Gi1vaorp1V+JpXJ0P3S09ONrr429DhtyH6zbt06fPDBB4iMjKyS/FW2++677+Kxxx6r9vWVQ9k5Ojo2er/XarXIyckx2l+r24dtbW0Nicb8+fOxdu1aTJ06FXZ2dvVe18OqfE+++eabGkdvqO4HycOQyWRVzvlAxXFlinPzg+pzDnFyckLHjh2xZMmSatt48OJQffdFR0dHaLVaZGVlGSV/jDGkp6cb7rg0RGxsLC5duoR169Zh+vTphumVnXrv5+TkhC+//BJffvklkpKSsGPHDrzzzjvIzMxEdHQ0ACAsLAybN28GYwyXL1/GunXr8OGHH0Iul+Odd95p1DY4Ozvj2LFj0Ov1NSaw27dvR0lJCbZu3Wq4egygQR2JnJyc4OjoaNimB1lbWwMw/i7z9PQ0zK88Rk2p8r26v+NbTSo7/Y0YMQJDhw5FdHS04Y6hvb294c5gTXfY/P3961yHr68vfvjhBwDArVu38MsvvyAyMhLl5eWGH8x1MdmV16SkJMyfPx+2traYPXt2vV4jFArRs2dPw6+ayluvpviFfL+rV6/i0qVLRtM2bdoEa2trw+27yi+yy5cvGy13fy/pSlKptN6xDRkyxPCFfb/169fDysrKJEPrKBQK9OzZE1u3bjWKS6/X4+eff4aXlxfatm3b6PVU6t27N+RyOX7++Wej6SkpKYYyiUp+fn64deuW0RdETk6OUe/OhggODoa7uzuioqKMSlQSExOrtMnHftQQDfncato/d+7cWaXdmvbPsWPH4u7du3B0dES3bt2q/Ktu5AmpVIoBAwbgk08+AVBxS60mlb/Sv/vuuxqXqfyifTDpvH+EkvvXDVT9/MaOHQvGGFJTU6vdjrCwMABAz549IZVKsWXLFqPXnzp1qsqt4yFDhuDatWtVyj/Wr18PjuMwaNCgGrepNtHR0Zg1axaeffZZLFy4sMr84OBgBAUF4dKlS9VuS7du3QxfdoMGDcLBgweNknGdTldl++qyceNGo783bdoEoOpYkXPnzkV2djYmTpyI/Pz8eg+b1JDzY3X69OkDOzs7XLt2rcb3pPLKZmP5+flVOaZu3bpl0nKd+9X0+QUEBBiuio0dOxaxsbEICAiodttru7NZm8rz8oPn7d9//x0lJSUPNXRiQ47n+/n4+OCVV17BsGHDqi254jgOnTp1whdffAE7OzvDMo3ZhlGjRkGlUtU6ckJ128MYw/fff19l2drOszk5OdDpdNV+fpU/RiuPtwePx19++cVoVImaNOT7LSIiAra2tli1alWdpZ0AEB4ejiNHjiAlJQUDBw40PIDKysoKgwYNwsWLF9GxY8dqt68yKa9vfG3btsX777+PsLCwBpVxPtSV19jYWEOdQ2ZmJo4ePYq1a9dCKBRi27ZttY4vtmrVKhw6dAhjxoyBj48PVCqV4UpQ5cMNrK2t4evriz/++ANDhgyBg4MDnJycah3WqTYeHh549NFHERkZCXd3d/z888/Yv38/PvnkE1hZWQGoqPMLDg7G/PnzodVqYW9vj23btuHYsWNV2gsLC8PWrVvx3XffoWvXrhAIBEbj3t5v4cKFhhqmBQsWwMHBARs3bsTu3buxfPly2NraPtQ2PWjZsmUYNmwYBg0ahPnz50MikWDlypWIjY1FVFSUSZ8YZWdnhw8++ADvvfcepk2bhilTpiAnJweLFi2CTCYz+pJ+5plnsHr1ajz99NOYNWsWcnJysHz5ctjY2DzUugUCAT766CM8//zzmDBhAmbNmoX8/HxERkZWuf3Cx37UUPX93EaPHg0HBwc899xz+PDDDyESibBu3TokJydXabPy6sWWLVvQpk0byGQyhIWFYd68efj999/Rv39/vPbaa+jYsSP0ej2SkpKwb98+vPHGG+jZsycWLFiAlJQUDBkyBF5eXsjPz8dXX31lVJtanX79+uGZZ57B4sWLkZGRgbFjx0IqleLixYuwsrLCq6++ioiICNjb22POnDlYuHAhxGIxNm7cWOVHQeV2AMAnn3yCUaNGQSgUomPHjujTpw9eeOEFzJw5E+fOnUP//v2hUCiQlpaGY8eOISwsDC+++CIcHBzw+uuvY9myZbC3t8eECROQkpKCRYsWwd3d3ejqy2uvvYb169djzJgx+PDDD+Hr64vdu3dj5cqVePHFFx/qx198fDyeeOIJtGnTBjNnzqxSCxYeHg6pVIrVq1dj1KhRGDFiBGbMmAFPT0/k5ubi+vXruHDhAn799VcAwPvvv48dO3Zg8ODBWLBgAaysrPDtt9/Wq/6zkkQiweeff47i4mJ0794dJ06cwOLFizFq1Cj07dvXaNm2bdti5MiR2Lt3L/r27Vul3rsmNe1/9aVUKvHNN99g+vTpyM3NxcSJE+Hi4oKsrCxcunQJWVlZtf5AaohnnnkGTz/9NF566SU8/vjjSExMxPLly5tsjEwnJycMHjwYH3zwARQKBVauXIkbN24YDZf14YcfYv/+/YiIiMDcuXMRHBwMlUqFhIQE7NmzB6tWrXqocaiHDRuGESNG4O2330ZhYSH69OmDy5cvY+HChQgPD8czzzzT4DZDQkIQEBCAd955B4wxODg4YOfOndi/f7/RcgUFBRg0aBCmTp2KkJAQWFtb4+zZs4iOjjbccdi1axdWrlyJ8ePHo02bNmCMYevWrcjPz8ewYcMavQ1TpkzB2rVrMWfOHNy8eRODBg2CXq/H6dOnERoaismTJ2PYsGGQSCSYMmUK3nrrLahUKnz33XfIy8ur0l5NecDkyZOxceNGjB49Gv/3f/+HHj16QCwWIyUlBX/99RfGjRuHCRMmIDQ0FE8//TS+/PJLiMViDB06FLGxsfjss8/q9f3YkO83pVKJzz//HM8//zyGDh2KWbNmwdXVFXfu3MGlS5fw3//+t8prQkNDcfToUQwdOhT9+/fHgQMH4OXlha+++gp9+/ZFv3798OKLL8LPzw9FRUW4c+cOdu7caahLDggIgFwux8aNGxEaGgqlUgkPDw9kZ2fjlVdewRNPPIGgoCBIJBIcOnQIly9fxjvvvFPndhs0pHdXZQ+2yn8SiYS5uLiwAQMGsKVLl1Y7nMaDvaRPnjzJJkyYwHx9fZlUKmWOjo5swIABbMeOHUavO3DgAAsPD2dSqdSo511le1lZWXWui7GK3qRjxoxhv/32G2vfvj2TSCTMz8+PrVixosrrb926xYYPH85sbGyYs7Mze/XVVw3Dw9w/2kBubi6bOHEis7OzYxzHGa0T1fT+u3LlCnvkkUeYra0tk0gkrFOnTlV64FX2Zr1/yBTG6u7BfL+jR4+ywYMHM4VCweRyOevVqxfbuXNnte01ZLSBB2OqtGbNGtaxY0cmkUiYra0tGzdunKEn7P1++uknFhoaymQyGWvXrh3bsmVLjaMNVBdXde/pmjVrWFBQEJNIJKxt27bsxx9/rNImY/zsR9UBwF5++eVq59Xnc2OsYuSFiIgIplAomKenJ1u4cCFbs2ZNlZ7mCQkJbPjw4cza2towvE+l4uJi9v7777Pg4GDD5xYWFsZee+01Qy/oXbt2sVGjRjFPT0/DMT569Gh29OjROrdTp9OxL774gnXo0MHQfu/evY2258SJE6x3797MysqKOTs7s+eff55duHChyn6uVqvZ888/z5ydnQ3H2f3b+eOPP7KePXsa3reAgAA2bdo0du7cOcMyer2eLV68mHl5eTGJRMI6duzIdu3axTp16sQmTJhgFHtiYiKbOnUqc3R0ZGKxmAUHB7NPP/3U0Nufsdr30weP1crjp6Z/92/LpUuX2JNPPslcXFyYWCxmbm5ubPDgwWzVqlVG6zh+/Djr1asXk0qlzM3Njb355pvsf//7X71HG1AoFOzy5cts4MCBTC6XMwcHB/biiy+y4uLial+zbt06BsBo2La61LT/NfQcd+TIETZmzBjm4ODAxGIx8/T0ZGPGjKnxfFSpIevR6/Vs+fLlrE2bNkwmk7Fu3bqxQ4cO1TjawINt1jQCT3Xnl8pzwMqVK1lAQAATi8UsJCSEbdy4sco2ZGVlsblz5zJ/f38mFouZg4MD69q1K/vPf/5j+Kwaci6vVFZWxt5++23m6+vLxGIxc3d3Zy+++CLLy8szWq4how1cu3aNDRs2jFlbWzN7e3v2xBNPsKSkJKPztkqlYnPmzGEdO3ZkNjY2TC6Xs+DgYLZw4ULDSC03btxgU6ZMYQEBAUwulzNbW1vWo0cPtm7duofahupGuikrK2MLFiwwfHc4OjqywYMHsxMnThiW2blzJ+vUqROTyWTM09OTvfnmm2zv3r0NygM0Gg377LPPDO0olUoWEhLCZs+ezW7fvm1YTq1WszfeeIO5uLgwmUzGevXqxU6ePFnjKBgPqun7rabRk/bs2cMGDBjAFAqFYdi9+0cTqO5zT0lJYSEhIczPz4/dvXuXMVax7z377LPM09OTicVi5uzszCIiItjixYuNXhsVFcVCQkKYWCw27A8ZGRlsxowZLCQkhCkUCqZUKlnHjh3ZF198UeeQoPfjGKvHNWRCWjk/Pz906NABu3bt4jsU0kjx8fEICQnBwoUL8d577/Edjll7/PHHcerUKSQkJDR4dAVCCGkqLe8Zn4QQ8o9Lly4hKioKERERsLGxwc2bNw1lK8899xzf4ZkltVqNCxcu4MyZM9i2bRtWrFhBiSshxKxQ8koIabEUCgXOnTuHH374Afn5+bC1tcXAgQOxZMkSk/VYb2nS0tIMyf7s2bPx6quv8h0SIYQYobIBQgghhBBiMUz+hC1CCCGEEEKaCiWvhBBCCCHEYlDySgghhBBCLAYlr4QQQgghxGJQ8koIIYQQQiwGJa+EEEIIIcRiUPJKCCGEEEIsBiWvhBBCCCHEYlDySgghhBBCLAYlr4QQQgghxGJQ8koIIYQQQiwGJa+EEEIIIcRiUPJKCCGEEEIsBiWvhBBCCCHEYlDySgghhBBCLAYlr4QQQgghxGJQ8koIIYQQQiwGJa+EEEIIIcRiUPJKCCGEEEIsBiWvhBBCCCHEYlDySgghhBBCLAYlr4QQQgghxGJQ8koIIYQQQiwGJa+EEEIIIcRiUPJKCCGEEEIsBiWvhBBCCCHEYlDySgghhBBCLAYlr4QQQgghxGJQ8koIIYQQQiwGJa+EENKK/P3333jkkUfg4eEBjuOwffv2KsswxhAZGQkPDw/I5XIMHDgQV69ebf5gCSGkGpS8EkJIK1JSUoJOnTrhv//9b43LLF++HCtWrMB///tfnD17Fm5ubhg2bBiKiopMGotGozFpe5a2fkLIw6HklRBCWpFRo0Zh8eLFeOyxx6qdzxjDl19+if/85z947LHH0KFDB/z0008oLS3Fpk2bamxXr9fjww8/hJeXF6RSKTp37ozo6GjD/ISEBHAch19++QUDBw6ETCbDzz//XG1bHMdh9erVGDt2LKysrBAaGoqTJ0/izp07GDhwIBQKBXr37o27d+8ave67775DQEAAJBIJgoODsWHDhirtrlq1CuPGjYNCocDixYsBADt37kTXrl0hk8nQpk0bLFq0CFqttl7vJyGEB4wQQkirBIBt27bNaNrdu3cZAHbhwgWj6Y8++iibNm1ajW2tWLGC2djYsKioKHbjxg321ltvMbFYzG7dusUYYyw+Pp4BYH5+fuz3339ncXFxLDU1tca4PD092ZYtW9jNmzfZ+PHjmZ+fHxs8eDCLjo5m165dY7169WIjR440vGbr1q1MLBazb7/9lt28eZN9/vnnTCgUskOHDhm16+Liwn744Qd29+5dlpCQwKKjo5mNjQ1bt24du3v3Ltu3bx/z8/NjkZGRDX07CSHNhJJXQghppapLXo8fP84AVEksZ82axYYPH15jWx4eHmzJkiVG07p3785eeuklxti/yeuXX35Zr7jef/99w98nT55kANgPP/xgmBYVFcVkMpnh74iICDZr1iyjdp544gk2evRoo3bnzZtntEy/fv3Y0qVLjaZt2LCBubu71xknIYQfVDZACCGkCo7jjP5mjFWZVqmwsBD37t1Dnz59jKb36dMH169fN5rWrVu3eq2/Y8eOhv93dXUFAISFhRlNU6lUKCwsBABcv379odZ//vx5fPjhh1AqlYZ/s2bNQlpaGkpLS+sVKyGkeYn4DoAQQoj5cHNzAwCkp6fD3d3dMD0zM9OQRNakPgmvQqGoVxxisbhKu9VN0+v1jVq/Xq/HokWLqq0Blslk9YqVENK86MorIYQQA39/f7i5uWH//v2GaeXl5Thy5AgiIiKqfY2NjQ08PDxw7Ngxo+knTpxAaGhok8ZbKTQ09KHW36VLF9y8eROBgYFV/gkE9BVJiDmiK6+EENKKFBcX486dO4a/4+PjERMTAwcHB/j4+IDjOMybNw9Lly5FUFAQgoKCsHTpUlhZWWHq1Kk1tvvmm29i4cKFCAgIQOfOnbF27VrExMRg48aNzbFZePPNN/Hkk0+iS5cuGDJkCHbu3ImtW7fiwIEDtb5uwYIFGDt2LLy9vfHEE09AIBDg8uXLuHLlimE0AkKIeaHklRBCWpFz585h0KBBhr9ff/11AMD06dOxbt06AMBbb72FsrIyvPTSS8jLy0PPnj2xb98+WFtb19ju3LlzUVhYiDfeeAOZmZlo164dduzYgaCgoCbdnkrjx4/HV199hU8//RRz586Fv78/1q5di4EDB9b6uhEjRmDXrl348MMPsXz5cojFYoSEhOD5559vlrgJIQ3HMcYY30EQQgghhBBSH1TQQwghhBBCLAYlr4QQQgghxGJQ8koIIYQQQiwGJa+EEEIIIcRiUPJKCCGEEEIsBiWvhBBCCCHEYlDySgghhBBCLAYlr4QQQgghxGJQ8koIIYQQQiwGJa+EEEIIIcRiiPgOgBBCzJFGz5Cj0SJHo0V2uRbZ5Rpka7TIKdeiQKuDhjFoGINW/89/GYNGD+jYfX//M58BkAsFUAgFsPrnvwqh8J//Vk7/929rkRDuUjHcpWJIBXSNgRBC7kfJKyGk1dHoGeLL1IgrVeNOqQrJqnJkG5LUioS1QKsD4zlODoCjWAQPmRieUgncpWJ4SMXwlEngIRXDQyaBu0QMkYDjOVJCCGk+HGOM7/MzIYQ0iQy1BndKVbhbqq74V6bG3VIVklTl0LWQM58AgKtUjCArKUIUcgQrZIZ/1iIh3+ERQojJUfJKCLF4jDHcLlXjfGEJLhSW4nJRKeJK1SjS6fkOjVeeUjHaK+XoYC1HmFKODtZW8JZJ+A6LEEIahZJXQojFyddocb6wtCJZLSjFxaJSFGh1fIdlEexFQnSwlqOnrRIRdkp0tbWiulpCiEWh5JUQYtYYY7heosLZghKc+ydZjStT816P2lLIBBy62CgQYadEbzsFutkqKJklhJg1Sl4JIWanUKvD4dwiHMwpxF+5hcgs1/IdUqshE3AIt7FCb7uKK7PdbBSQCSmZJYSYD0peCSFm4XpxGQ7kFOJgTiHOFZZAS2cmsyAVcOhuo8BIZ1uMcbaFu5RqZgkh/KLklRDCixKtDn/nFeFQbhEO5RQiVa3hOyRSBw5AuI0VRjnZYqyzHfytpHyHRAhphSh5JYQ0myKtDnuyCrA9Mw/H84pRTqcfixaikGG0sy3GONuhvVLOdziEkFaCkldCSJNS6fQ4kFOIbZl5OJhTCJWeTjktkZ9cYrgi29VWwXc4hJAWjJJXQkiTOJVfjF/Sc7EzM7/Vj7fa2rSRSzHV3QGT3B3gLBHzHQ4hpIWh5JUQYjLJqnL8kpaLXzNykVBWznc4hGdijsNwJxs87e6IAQ7WEHD0GFtCSONR8koIaRQ9Y9ibXYC1Kdk4nl9M46+SannJxJji5ogp7g7woKd8EUIagZJXQshDKdLqsPFeDn5MzUaSiq6ykvoRcsAgh4qrsUMdbSAS0NVYQkjDUPJKCGmQhDI11qRkYXNaLoqplpU0gqtEhGkeTnjWywn2YhHf4RBCLAQlr4SQejmeV4T/pWRhf3YhKGUlpqQQCvC0hyPmeDvTQxAIIXWi5JUQUiO1Xo9tGXlYk5KN2OIyvsMhLZyE4zDRzR6v+LiiDT0AgRBSA0peCSFVqHR6rE3NxsrkTGSVa/kOh7QyAgBjnO0w19cFYdZWfIdDCDEzlLwSQgw0eoaf03LwVUIG0svpca2Ef4McrPGKjwv62FvzHQohxExQ8koIgY4x/Jqei88TMpBMIwcQM9TVxgpv+btjgAMlsYS0dpS8EtKKMcawIysfn8Wn43apmu9wCKnTIAdrLAjwQKhSzncohBCeUPJKSCu1L7sAy+PTqSMWsTgCAJPdHfC2vztcpfT4WUJaG0peCWlljuUVYVlcGs4XlvIdCiGNYiUU4EVvZ7zk4wKFUMh3OISQZkLJKyGtxD1VOT64k4rdWQV8h0KISblKRHjT3x1T3B0g5OiJXYS0dJS8EtLCafQMq5MzsSIxA6X0RCzSgoUoZPggwANDHG34DoUQ0oQoeSWkBTueV4R3b6XiVqmK71AIaTYD7a3xcbAX/OT0oANCWiJKXglpgTLVGkTevYetGXl8h0IIL+QCDvP93THH25lKCQhpYSh5JaQF0TGGH1OysTw+DUVUIkAIOirlWBHijQ70pC5CWgxKXglpIc4WlOCdW8m4WkwlAoTcT8QBL3q74A0/N8iEAr7DIYQ0EiWvhFi4Mp0eH929h7Wp2aCDmZCaBcil+CzEG73tlHyHQghpBEpeCbFgl4tK8fK1RHo6FiH1xAF42sMRHwR4wEZEY8MSYokoeSXEAukYw38TM/FZQjo0dAgT0mBuEjE+buuFkc62fIdCCGkgSl4JsTCJZWq8ej0JZwpK+A6FEIv3lLsDFgd5QU61sIRYDEpeCbEgUWk5+OB2KoppJAFCTCZEIcPq9n4IVsj4DoUQUg+UvBJiAXLKtXjzZjL2ZNOjXQlpCnKBAEvaemKquyPfoRBC6kDJKyFm7mBOIV67kYTMci3foRDS4j3uao/lbb2goM5chJgtSl4JMVN6xrAsLg3fJGXyHQohrUqAXIrV7X3pwQaEmClKXgkxQ/kaLV68loi/cov4DoWQVkkq4LAwwAPPejnzHQoh5AGUvBJiZq4Xl2FmbDwSysr5DoWQVm+Msy1WBHvDViziOxRCyD8oeSXEjOzMzMf/3UhCKY0mQIjZ8JFJ8FOYP0KVcr5DIYSAkldCzIKeMXwcl4avqb6VELOkFAqwsp0vhjvRQw0I4Rslr4TwjOpbCbEMAgDvtnHHq76ufIdCSKtGySshPKL6VkIszxNu9vgs2BtSAT2VixA+UPJKCE/2ZuXjletJKKH6VkIsTg9bBdaF+cOBOnIR0uwoeSWEBxvuZePtmymgtJUQy+Uvl2BTxwD4W0n5DoWQVoWSV0Ka2RcJ6fgkPp3vMAghJuAgFuKnsDbobqvgOxRCWg1KXglpJowxfHAnFWtSsvkOhRBiQjIBh69CfTDOxZ7vUAhpFSh5JaQZaPQM/3cjCVsz8vgOhRDSBDgAS9t6YaanE9+hENLiUfJKSBMr1enxXGw8DYVFSCuwKNADs71d+A6DkBaNkldCmlCeRounL8fhfGEp36EQQprJe23cMZfGgiWkyVDySkgTuacqx+RLcbhVquI7FEJIM3vdzxVv+bvzHQYhLRIlr4Q0gTulKkyKuYtUtYbvUAghPHnZxwUfBHjwHQYhLQ4lr4SYWEKZGuMv3EF6OSWuhLR2z3s5YXGQF99hENKiUPJKiAmlqMox/uJtpKgocSWEVJjm4YhP2nqB4zi+QyGkRaDklRATyVRrMP7iHcSVqfkOhRBiZp50s8eXIT4QUAJLSKMJ+A6AkJYgp1yLJy7dpcSVEFKtX9Lz8Mr1JOjpehEhjUbJKyGNVKDRYvKlu7hZQqMKEEJqtjUjD+/fTuU7DEIsHiWvhDRCiVaHqZfjcKW4jO9QCCEW4MfUbHyZkM53GIRYNEpeCXlIZTo9nrkSTw8gIIQ0yMfx6dh0L4fvMAixWJS8EvIQyvV6PBsbjxP5xXyHQgixQG/eSsaf2QV8h0GIRaLklZAG0jOGOVcT8VduEd+hEEIslI4Bc64m4Az9ACakwSh5JaSBFtxJxR66YkIIaaQyPcO0K/G4UUI184Q0BCWvhDTAmpQsrEnJ5jsMQkgLka/VYcqlOKSoyvkOhRCLQckrIfW0L7sAC+/QMDeEENNKU2sw5dJd5Gm0fIdCiEWg5JWQerhSVIo51xKho/HFCSFN4HapGs9cjoNar+c7FELMHiWvhNQhs1CFFafiodbRlwohpOmcKyzFu7dS+A6DELNHySshtVBpdJi14Tz+OpiATukaWAvpkCGENJ1NablYn0p19YTUhr6JCanFO79fxqXkfADAtUuZcL1SAE+JmN+gCCEt2vu3U3GuoITvMAgxW5S8ElKD1UfuYnvMPaNpKcmF0P6dhnZSKU9REUJaunLG8HxsArLKNXyHQohZouSVkGqcisvB8j9vVjuvoECN5D0J6CmiBJZUr/SPX5Dz/JPIHNsXmWP7IveVaVCfPmaYX7xuFbKnT0DG6N7IfLQ/8ubPhub6lXq3rzoUjYzB4cj/4DWj6WUH9iBr0khkjhuAolVfGM3Tpd9D9rRx0JfQoPiWIL1cg1mxCdDoqZcoIQ/iGGN0ZBByn8wiFcZ8fQxZReo6l+062AcnxTpQVy5yP/WJI4BAAKGnDwBAtW8nSrb8BMfVmyHyD0DZwb0Q2NlD6O4FqNUo+f1nqI8cgNOGPyCwc6i1bV36PeTOnQmhuycENraw+6giSdUX5CFr0ijYvr0IQncv5L33KmzfWgRpr34AgLx3XoZ89GOQ9R/StBtPTOo5TycsaevFdxiEmBW68krIfXR6hrlRF+uVuALA+UNJ6JKlg0JAhxL5lzRiAKS9+kHk7QuRty+Uz70CTm4FzfXLAAD5kFGQdu0FkYcXRP4BsH7xDbCSYmjibtfaLtPpULD0P1DOmAOhh3FCo7uXCoFCCdmgERCHtIekc3doE+IAAGUH94ITiSlxtUA/pGbj1/RcvsMgxKzQNy4h91mx/yZOxTXsiyL2Qjq8bhTBTSxqoqiIJWM6HVSHosFUZRC361h1vkaDsl1bwSmUEAe0rbWtkg3/g8DWHvLRE6rME3r5gKlV0Ny+AX1hAbQ3r0IUEAR9YQFK1n4H67nvmGybSPN662YyrhSV8h0GIWaDvm0J+cdfNzKx8vDdh3ptYnw+7PNVCO7njptqeswjATRxt5H3ynSw8nJwcjnsFn0OkV+AYb765N8o+OgdMLUKAgcn2H+6CgJb+xrbK4+NQdme7XD8fnO18wXWNrB5+0MUfvwBmFoN2bCxkHaPQMHySFhNmAxdWiry358HptVCOX02ZAOGmXybSdMo0zM8G5uAP7u1hQP9SCaEal4JAYCUvFKM/eYY8ksb17tXIhEgeLgfzmrqV3ZAWi6m0UCXmQZWXATV3wdRtmcbHL5YY0hgWVkZdLlZ0Bfko2z3VpRfPAvHbzdAYF+15lVfWoKc55+Ezf+9C2nPvgCAgk8WgBUXGWpeq1Mecw5Fq7+AwxdrkP3Mo7B9fxkE9k7IffkZOK3/o9p1EfM1wskGP4W14TsMQnhHyStp9XR6homrTuBiUr7J2uw61A8nhBrQwUUq5c2fDaGHN2xef7/a+dnPPAr5qHFQTH2uyjzNnZvIfWEyIBD+O5H9002QE8Dxp20QeXobvYaVlyNn9mTYvrsEEAqR9+YcuGw9BADIefEpKJ95AdKIAabZONJsVoR4Y6q7I99hEMIruv9AWr1v/7pj0sQVAM4fSECPHu645CiEioa6IQDAAKappaSEAayGcT1FPn5w/OFXo2nFP34LVloK61fehNDFrcprSjZ8D2mPPhC3DYXm9g1Ap/t3plYLpqcxMizRgtup6GunhI+chuojrRclr6RVu5ySj68P1t7D+2FdOpOGgEB7ZIbYIEujbZJ1EPNUtOYbSHv0gdDFDfrSEqj/+hPll87B7uNvwcrKULxxDaQRAyB0cIK+sAClO36BLivDqA61YNn7EDi5wHrWXHASKUT+gUbr4JTWAFBlOgBo4+9CdfhPOP5vS8UyPn4AJ0DZnm0QODhBm5QAcXD7pnsDSJMp1ukx93oStoYHQsBxfIdDCC8oeSWtlkqjw2tbYqBtwiujd+/kwblAjcDerrhDHblaDX1eDgqWvQ99bnbFKAJtgmD38beQdusFVq6GLikBBX/uhL4wHwIbW4iD28Phqx8h8v+3Q5cuMx14iCHYGGMoXPERrF+aD04uBwBwUhls316Ewq+WARoNrOe+DaGzi8m2lzSvUwUlWJWchZd86DMkrRPVvJJWK3LHVaw7kdAs65LLRGgzzAfny6kjFyGk8aQCDtFd2yJUKec7FEKaHY3zSlqlY7ez8dPJhGZbX5lKi6u74hABcbOtkxDScqn1DK9cT0Q51S6TVoiSV9LqFJRp8OZvl9Ds9xwYcOHPBPQqBCRUq0YIaaSrxSp8Gp/OdxiENDtKXkmrs2jnVaQVqHhbf8zJVIQklMFBJKx7YUIIqcW3SZk4k1/MdxiENCtKXkmrcvxONrZeSOU7DNy6kQOb8znwl1IZASHk4ekBzL2RhBKtrs5lCWkpKHklrYZKo8P722P5DsMgPb0EhQdS0VlK4zUSQh5eQlk5lidQ+QBpPSh5Ja3Gt3/dQXx2Cd9hGCkp1eDWrnhECCR8h0IIsWA/pGThRkkZ32EQ0iwoeSWtwp3MIqw+Esd3GNXS6xku7I1HRAkHEfXjIoQ8BC0D3rvFf0kUIc2BklfS4jHG8N7WWJTrzHtImQvHUtAhpRy2QurIRQhpuBP5xdiWkcd3GIQ0OUpeSYv3y7lknEnI5TuMerkRmwWnS3nwllBHLkJIwy26cw/F1HmLtHCUvJIWLbekHMv23uA7jAZJTS2C6vA9hFFHLkJIA6WXa/A5dd4iLRwlr6RF+2L/LeSXavgOo8GKisoRtzsevUSUwBJCGmZNSjZulfA3ljUhTY2SV9Ji3cksQtSZJL7DeGg6HUPM7jhEqAWgKlhCSH1pGMN7t1L4DoOQJkPJK2mxFu++Dq2+uZ8Ba3oXDiejc4YGSiEdroSQ+jmWX4zt1HmLtFD0bUhapL9vZeHwzSy+wzCZqzGZ8LhaAA/qyEUIqadFd+/Rk7dIi0TJK2lxdHqGJbuv8x2GySUlFkL/dxraUUcuQkg9pKk1+Dopk+8wCDE5Sl5Ji7P5bBJuZhTxHUaTyC9QI3lPAnqKKYElhNTt+5QsZJdr+Q6DEJOi5JW0KMVqLb7Yf4vvMJqURqvHpV1x6KMVgR7IRQipTalOj/8mZfAdBiEmRckraVHWHI1DdnE532E0i/MHE9EtWwcrAR3GhJCa/ZSajQy15Q0ZSEhN6FuPtBgFZRr8cCye7zCa1ZXz6fC9WQRXsYjvUAghZqpMz/B1Il19JS0HJa+kxfjhWDyKVK2vtis+Lh+iExloK5XwHQohxEz9nJaDVFXruCtFWj5KXkmLUFCqwdpWdtX1fjm5KmT8mYhuEurIRQipSq1n+JKuvpIWgpJX0iKsORaHInXru+p6P7Vaj9hdceijp7FgCSFVbU7LRWKZmu8wCGk0Sl6JxcsvLcfa4wl8h2EeGHB+fwJ65TNIBTQWASHkXxrGsCKBrr4Sy0fJK7F43x+NQ3Erv+r6oJjT9xB4txROYiHfoRBCzMhvGbm4W6riOwxCGoWSV2LR8kvL8dOJRL7DMEt3b+XC6nQ2AqgjFyHkHzoGfE5XX4mFo+SVWLSNp5PoqmstMrNKkbc/GV3okbKEkH9sz8hDAtW+EgtGySuxWOVaPX46kcB3GGavtEyL6zvjEAHqyEUIAfQAfkjJ4jsMQh4aJa/EYv0Rk4rMIrp6UB+MARf+TEDvIkDCUUcuQlq7zWm5KNbq+A6DkIdCySuxWK3taVqmcPFEKkKSVLATUUcuQlqzIp0em9Nz+Q6DkIdCySuxSEdvZ+FGehHfYVikW9eyYXchF35SKiMgpDX7MSUbjDG+wyCkwSh5JRbp+6N01bUx0tOKUXQwFZ2oIxchrVZcmRoHc+kiALE8lLwSi3MzvQh/36LOBo1VUqLB7V3xiBDQUFqEtFZrkulcSiwPJa/E4qyjEQZMRq9nuLA3Hn3KBBBRPy5CWp3DeUW4VUIPLSCWhZJXYlFK1FrsiEnlO4wW5/zfyeh4rxw2QjolENLa0LBZxNLQNxWxKDsv3UNJOQ3v0hSuXc6Cy+V8eEmoIxchrcmvGXko0NDDXojloOSVWJSos8l8h9CipaQUofzIPXSgjlyEtBqlOj02pdGwWcRyUPJKLMb1tEJcSs7nO4wWr7CwHAl74tFLRAksIa3FulQaNotYDkpeicXYfCaJ7xBaDa2WIWZ3HPqohXSSIKQVSFSV41RBCd9hEFIv9L1ELIJKo8O2i9RRq7mdP5yELplaKKgjFyEt3q/0xC1iIegbiViEPVfSUKiiDgV8iL2YAa9rhXAXi/gOhRDShHZm5qNMp+c7DELqRMkrsQi/nU/hO4RWLTGhADiejhDqyEVIi1Wk0yM6u4DvMAipEyWvxOxlFqlwKi6H7zBavbw8NVL3JqCHmBJYQlqqX6h0gFgASl6J2dtzOQ166gRrFjQaPS7vikNfrQj0QC5CWg43iQBP2aZhXNlylJdn8x1OvXAch+3bt9dr2cjISHTu3LlJ4yHNh5JXYvZ2Xk7jOwTygHMHE9EjVwe5gFJYQiyVjVCA8bYFWKbYjE/VEzE6/xU4lx5AZmZ0k62zqKgI8+bNg6+vL+RyOSIiInD27NlaX1NT4pmWloZRo0Y1UaTG1q1bBzs7u2ZZF6kb9cAgZi01vwwXkvL4DoNU49LZdLQJsEdWqA2y6Ok8hFgEKcehr3UZIthRBBWthzC/tMoyGRm74OX1dJOs//nnn0dsbCw2bNgADw8P/Pzzzxg6dCiuXbsGT0/PBrXl5ubWJDES80dXXolZ2335HmjcbPMVdzcP0lNZCJJK+A6FEFIDDkAPpQ7zbc7iO+5FPFvwFEIKV0HIqiauAJBfcA4qdbrJ4ygrK8Pvv/+O5cuXo3///ggMDERkZCT8/f3x3XffVfuadevWYdGiRbh06RI4jgPHcVi3bl3Fdj1QNpCSkoLJkyfDwcEBCoUC3bp1w+nTp6ttNz4+HoGBgXjxxReh1+tRXl6Ot956C56enlAoFOjZsycOHz4MADh8+DBmzpyJgoICQwyRkZEAgJUrVyIoKAgymQyurq6YOHGiqd4uUgu68krM2s5LVDJg7rKzSyH7MwndhvviXLma73AIIf8IkXMYJLmOzqUboCy60YBXMmRm7IaPz3MmjUer1UKn00EmkxlNl8vlOHbsWLWvmTRpEmJjYxEdHY0DBw4AAGxtbassV1xcjAEDBsDT0xM7duyAm5sbLly4AL2+6tBfsbGxGD58OKZPn45ly5YBAGbOnImEhARs3rwZHh4e2LZtG0aOHIkrV64gIiICX375JRYsWICbN28CAJRKJc6dO4e5c+diw4YNiIiIQG5uLo4ePdqo94jUDyWvxGwlZJfgSioN22IJVGodYnfFoc8wPxznNHyHQ0ir5SkRYKg8CV3Vv8Cx9DhQ/cXVOmVk7DJ58mptbY3evXvjo48+QmhoKFxdXREVFYXTp08jKCio2tfI5XIolUqIRKJaywQ2bdqErKwsnD17Fg4ODgCAwMDAKsudPHkSY8eOxbvvvov58+cDAO7evYuoqCikpKTAw8MDADB//nxER0dj7dq1WLp0KWxtbcFxnFEMSUlJUCgUGDt2LKytreHr64vw8PCHfn9I/VHySsxW9FXT37YiTYgB5/cloFcvD1y0E0BN9R6ENAs7kQCDFdnoqdkDz5Lt4NSNP/YKiy5DpUqDTOZuggj/tWHDBjz77LPw9PSEUChEly5dMHXqVFy4cKFR7cbExCA8PNyQuFYnKSkJQ4cOxeLFi/Haa68Zpl+4cAGMMbRt29ZoebVaDUdHxxrbGzZsGHx9fdGmTRuMHDkSI0eOxIQJE2BlZdWobSF1o+SVmK1DNzL5DoE8hJhT99A22AGpgUrkanV8h0NIiyQTcOivLEEEO4I2RRshzC8z+Tpycg7D03OKSdsMCAjAkSNHUFJSgsLCQri7u2PSpEnw9/dvVLtyubzOZZydneHh4YHNmzfjueeeg42NDQBAr9dDKBTi/PnzEAqFRq9RKpU1tmdtbY0LFy7g8OHD2LdvHxYsWIDIyEicPXuWRiZoYtRhi5ilgjINLiTSKAOW6vbNXCjP5qANdeQixGSEACKUWrxtcwLfsRcwveAZBBWugZCZPnEFgOycw03SLgAoFAq4u7sjLy8Pf/75J8aNG1fjshKJBDpd7T+EO3bsiJiYGOTm1vyQBblcjl27dkEmk2HEiBEoKioCAISHh0On0yEzMxOBgYFG/yrLBGqKQSQSYejQoVi+fDkuX76MhIQEHDp0qD5vAWkESl6JWfr7Vha09GQCi5aZWYL8AykIp0fKEtIoHayAV2yv4TvR23i5aBI6FnwOib7pHySQl3cCer1pO2H++eefiI6ORnx8PPbv349BgwYhODgYM2fOrPE1fn5+iI+PR0xMDLKzs6FWV41pypQpcHNzw/jx43H8+HHExcXh999/x8mTJ42WUygU2L17N0QiEUaNGoXi4mK0bdsWTz31FKZNm4atW7ciPj4eZ8+exSeffII9e/YYYiguLsbBgweRnZ2N0tJS7Nq1C19//TViYmKQmJiI9evXQ6/XIzg42KTvGamKkldilv6ikoEWobRUgxs749CHoyuwhDSEj1SAmbZJ+K90Od4teRy98z+AQnOnWWPQ6UqRl1f9UFMPq6CgAC+//DJCQkIwbdo09O3bF/v27YNYLK7xNY8//jhGjhyJQYMGwdnZGVFRUVWWkUgk2LdvH1xcXDB69GiEhYXh448/rlIGAFSUAuzduxeMMYwePRolJSVYu3Ytpk2bhjfeeAPBwcF49NFHcfr0aXh7ewMAIiIiMGfOHEyaNAnOzs5Yvnw57OzssHXrVgwePBihoaFYtWoVoqKi0L59e9O9YaRaHGPUq4KYF72eofuSA8gpKec7FGJCXfp64awS0NAph5BqOYoFGGKVie6anfAo2cV3OAAAL69pCG67kO8wCDFCHbaI2bmUkk+Jawt04VgK2rV3QoKfFQqoIxchAAArAYeByiL01h+EX/FmCPLN69yXk/M33yEQUgUlr8TsUMlAy3XzajY88pSw7eqEpHIaD5a0TiIO6K3UoC93EsFF6yEuMN/OqWVlCSgrS4Vc3rBHtxLSlCh5JWbnyO2m74hA+HPvXjGUBWp0HOKNy9V0vCCkpeqsYBgguoyw4nWQFybxHU695eYdg6d8Et9hEGJAySsxKyVqLa7SU7VavOISDe7ujkfvEf44qaMElrRcbWQCDJbeQZeyTbAtvsh3OA8lN/c4PD0oeSXmg5JXYlbOJ+bREFmthE7HcHFPHPr098YpuR5UBUtaCmexAEOs0tCjfBtcS/cDTTMMa7PJyzsJxhg4juM7FEIAUPJKzMyZ+JoHmCYt0/m/k9Gpkwtue0pRpNPzHQ4hD0Up5DBIUYBeuv3wLfkFXL6W75BMRqPJRVHxVdhYd+A7FEIAUPJKzMzp+By+QyA8uHYpE165NrDp7IBU6shFLISY49BHqUJfHEdQ0XqICor4DqnJ5OedoeSVmA1KXonZUGl0uJRC9a6tVUpyIWwL1Wg3wBPXqCMXMVMcgC4KPQYIL6J98U+QFabyHVKzKCi0zHpd0jJR8krMRkxyPsq1dNu4NSsoUKN0TwJ6jvDDaS0lsMR8BMk5DJbcRueyDbApjuU7nGZXUEDJKzEflLwSs0H1rgQANFo9Lu2OQ9/BPjgh1oF+zhC+uEsEGCJPRTf173Au/Qso5Tsi/qjVaVCp0yGTuvEdCiGUvBLzcTaBklfyr3OHktC1ixuuuopRqqcUljQPW6EAg5S56KndC6/ibRCoaRyMSgUFFyFzGcV3GIRQ8krMRyyN70oecOVCOnz97VDQ3hbpmpbTe5uYFynHoa+yDH3wNwKLNkCY34ovsdaisOAiXCl5JWaAkldiFlLySpFXSr3MSVWJ8flwKFAhuK87bqrN67nvxHIJAHRX6tBPcB7titdBWpjBd0hmSACp1BeM+aKk2Bk3bzojKIjvmAih5JWYidjUQr5DIGYsN1eF4uhEdB/hh7Pl1JGLPLxQOYdBkuvoVLoeyqKbfIdjViQSN3BcG5SVuSI7S4nEREClun9+FsaMoYcVEP5R8krMwtV7VDJAalderseVnXHoM9QPJ4Qa0HPYSKWSTT9AdfQQdEkJgFQKSftOUM76P4h8/AAAXlIBhsiS0E39CxxKjwOlwNGjJdi5oxB376qh0TD4+kowbbo9une3MrR7/lwpvv46B3n5WvSJUOD1N5whFlckbsXFerz8UiqWf+oOV1fL+yoViewgEgVCrXJHbp4tkpMEKCio/agqLy9HTk4OnJycmilKQqpneUccaZGo3pXU1/kDCejRwx2XHIVQ0aOECYDySxdgNW4SxMHtwfRaFP/wLQrefgkzf/8efUQH4VmyA5zKeF+5crkMXbvK8exz9lAqhfgzuggfvJ+Ob/7riaAgKfR6hmXLMjF5sh26dbfCh4sysGd3IcaNtwUArPk+B488Ym0RiatAIIdEEgitxgv5+XZITZUgM/PBTpD1O5bS0tIoeSW8M/+jjrQKsfeobIDU36UzaQgItEdmiA2yqCNXq2f/ybcAAJmAwwBlCcI+7Is3hx9F6NlZ8Ooor/Y1L71snIA997wDTpwowamTpQgKkqKgQI/8fD0eHWcDiUSA3r2tkJhYUZcfG6vCrVtqvDrX/JI4jhNBKvGHXu+DwiJHpKfLkZKsA2P33+p/+NE70tLSEBYW1vhACWkESl4J7zILVcgqojpG0jB37+TBuUCNwN6uuEMduVotIYCeSi36CU4jpGg9JAXZSE2vSDKtrYX1bkevZygt08PaRgAAsLMTwNFRiHPnKq7QXrmiwvDh1tBoGL76Mhvz33SGUMh37ScHqcQL4PxRUuKMzAwrJCcD5UaHgx4VzwUzjbS0NJO1RcjDouSV8O4qXXUlDykrqxTyfcnoOswH56kjV6sSZgUMFMcirGQ9FEV3DdMZY1j1XQ46dJDB319S7/Z+/bUAqjKGAQOUAACO4/D+B6747rscrPw2Bz16WGHkKGtEbcpHeBcZpFIO/zc3FQUFeoyfYIPx/5QTNCWx2BlCYRuoytyQnW2NpCQBSkqat3TG3JNXjuOwbds2jB8/vs5lIyMjsX37dsTExDR5XMS0KHklvLudWcR3CMSClam0uLorDn2G++E4aLi1lsxXKsAQWTy6qKJgX3K22mW++ToHcXHl+PIrj3q3e+hQMTasz8OiD11hb//v1dqwMBlWrvQ0/J2SXI4DB4qwarUXXpt3D489bovu3a0w6/lkdAyToU2A9OE37gFCoTXE4kCUl3sgL9cWKSki5OY+mKg2f823SqVCfn4+7OzsTNamVqtFZGQkNm7ciPT0dLi7u2PGjBl4//33IRAIqn1NTYlnWloa7O3tTRZbbdatW4d58+YhPz+/WdZH/kXJK+FdfHYJ3yEQS8eA838moHdvT5y35VDOqCNXS+EkFmCIVQa6a3bAvWQPoKp52W++ycbJkyVY8YUHnJ3r9/X211/F+PyzLHywwBVdu1rVuBxjDCu+yMbsOY7Q64E7d8rRv78CMpkAHTvKcemy6qGTV46TQCoNhE7rhYICB9y7J0Fa2oO3+81nn87NzTVp8vrJJ59g1apV+Omnn9C+fXucO3cOM2fOhK2tLf7v//6vQW25udHja1uD6n/SENKM4rIoeSWmcfFkKkISy2Avqn+tIzE/VgIOY2yKsVi5HV9oJuHR/DkViWsNGGP45utsHDtagk8/84C7u7he6zl0qBifLs/Ce++5oFevmhNXANi7pwg2NgJERCig/2eUC+0/fQW1Wob6P8FYAKnUHxLJIJSXP4HkpGk4fmwS9u/rikOHXHH+vBhpaQymrFM1tdxc0z7K++TJkxg3bhzGjBkDPz8/TJw4EcOHD8e5c+eqXX7dunVYtGgRLl26BI7jwHEc1q1bB6CibGD79u2GZVNSUjB58mQ4ODhAoVCgW7duOH36dLXtxsfHIzAwEC+++CL0ej3Ky8vx1ltvwdPTEwqFAj179sThw4cBAIcPH8bMmTNRUFBgiCEyMhIAsHLlSgQFBUEmk8HV1RUTJ0401VtF/kFXXgnv6MorMaVb13PglqeCXQ9nxKupjMBSiDigt1KDvtwJBBf+BHFB/YfP+/rrHBw6WIwPP3KFlRWH3NyKrFKhEEAqrbhGs2ZNLrKztXjnHRcAFYnrJx9n4qWXHRHaTmp4jUQigFJpfF0nL0+HjRvz8dU/pQjW1kL4+IixdWsBunWV4+LFMkx9yq7a2CQSD3CcP8pKXZGVpUBSEgeV0bBd5nNFtb5Mnbz27dsXq1atwq1bt9C2bVtcunQJx44dw5dfflnt8pMmTUJsbCyio6Nx4MABAICtbdWa4+LiYgwYMACenp7YsWMH3NzccOHCBeir+aURGxuL4cOHY/r06Vi2bBkAYObMmUhISMDmzZvh4eGBbdu2YeTIkbhy5QoiIiLw5ZdfYsGCBbh5s+JhF0qlEufOncPcuXOxYcMGREREIDc3F0ePHjXRO0UqUfJKeFWi1iKTRhogJpaeXgLFgXJ0HuqNGDXtX+YsXMEwQHQZHYrXQV6Y9FBt7NxR0enzjdeNOxO9+aYzRoy0BgDk5miRmfnvsGq7dhVCp6uokf3m6xzD9OHDlXjrbRejdlZ+m40nnrSF032lCG+97Yzln2Rh29YCPPmkHUJCZBCJ7CESBUCt8kBurjWSkoQoLOS/TtXUTJ28vv322ygoKEBISAiEQiF0Oh2WLFmCKVOmVLu8XC6HUqmESCSqtUxg06ZNyMrKwtmzZ+Hg4AAACAwMrLLcyZMnMXbsWLz77ruYP38+AODu3buIiopCSkoKPDwqfrTMnz8f0dHRWLt2LZYuXQpbW1twHGcUQ1JSEhQKBcaOHQtra2v4+voiPDz8od8bUj1KXgmv6KoraSolpRrc2hWPiBF+OKGnobTMSYBMgMHSOwgv2wTb4ouNbu/AwTZ1LvNgQrpiRf07dP3nfdcq09q1c8CmqB7QaDxRkG+PG9dFyMpqeYlqdXJycupeqAG2bNmCn3/+GZs2bUL79u0RExODefPmwcPDA9OnT3/odmNiYhAeHm5IXKuTlJSEoUOHYvHixXjttdcM0y9cuADGGNq2bWu0vFqthqOjY43tDRs2DL6+vmjTpg1GjhyJkSNHYsKECbCyqr0shTQMJa+EV5S8kqak1zNc2BuPiH5eOKNg0LbMXMIiuIgFGGqVhu7lW+FSegAo4zui+uM4MaQSf+j0PigsdEB6mhypqQ8O/N96dq68vDwwxsBxpqnLffPNN/HOO+9g8uTJAICwsDAkJiZi2bJljUpe5fLqH1BxP2dnZ3h4eGDz5s147rnnYGNjAwDQ6/UQCoU4f/48hELjGnqlUllje9bW1rhw4QIOHz6Mffv2YcGCBYiMjMTZs2dN2smttaPklfCKklfSHC4cTUFYmDPivOUo0On4DqfVsBYKMFCZj97affAu/gWCckt47zlIJd4A/FFS4oTMTAWSkhg0RuXTph3439JotVoUFRUZEr3GKi0trTIkllAorLY2tZJEIoGujmO5Y8eOWLNmDXJzc2u8+iqXy7Fr1y6MHj0aI0aMwL59+2BtbY3w8HDodDpkZmaiX79+DYpBJBJh6NChGDp0KBYuXAg7OzscOnQIjz32WK3xkvqj5JXwKim3lO8QSCtx/UoWPHOtYdPFEcnl1JGrqUg4Dn2UKvThjiGocD1E+cV8h1QrsdgZQkEAysrckJ2tRHLygwP/t54rqg2Rn59vsuT1kUcewZIlS+Dj44P27dvj4sWLWLFiBZ599tkaX+Pn54f4+HjExMTAy8sL1tbWkEqNhyqbMmUKli5divHjx2PZsmVwd3fHxYsX4eHhgd69exuWUygU2L17N0aNGoVRo0YhOjoabdu2xVNPPYVp06bh888/R3h4OLKzs3Ho0CGEhYVh9OjR8PPzQ3FxMQ4ePIhOnTrBysoKhw4dQlxcHPr37w97e3vs2bMHer0ewcHBJnmvSAVKXgmvMgprGbSREBNLTS2CdaEaYYO8cIU6cpkMB6CrQo/+ogtoX7QessJUvkOqllBoA7E4AOVqT+Tm2SAlWYy8vAev7lGyWh+FhaZ7MuI333yDDz74AC+99BIyMzPh4eGB2bNnY8GCBTW+5vHHH8fWrVsxaNAg5OfnY+3atZgxY4bRMhKJBPv27cMbb7yB0aNHQ6vVol27dvj222+rtKdUKrF3716MGDECo0ePxt69e7F27VosXrwYb7zxBlJTU+Ho6IjevXtj9OjRAICIiAjMmTMHkyZNQk5ODhYuXIihQ4di69atiIyMhEqlQlBQEKKiotC+fXuTvV8E4Bij0bwJf0Z88TduZtATtkjzEgo5hI30xyktJbCN0VbOYZDkFsJLN8C6/Crf4RgRCKSQSAKh1XqhoMAe91IlSE9v3bf7TWnYsGHo06cP32GQVoquvBJeZRTRlVfS/HQ6hpjdcYgY6I3TUj0soRLTXHhIBBgiT0G38t/gVHoEMIPKHw5CSKR+YMwHP6y5jSNH7uDevRSIRInw9vbG0KFD4eTkhJoS14SEBPz0009Vpr/88sv/vK5i6KQ9e/agpKQEISEheOSRRwwdeVQqFb7//ntMmzat2vFGWyJTXnklpKEoeSW8UWt1yC+l2kPCnwuHk9G5swtuekhRrKv3I5JaHVuRAIMVueip3Quv4t/Bqfm9YVcx8H8blJa6ICtTgaQkoLIK5Nixw+jUqTtGjfKAXq/HoUOH8PPPP+Oll16CRCKptd1XXnnFqG6ycngjxhi2bt2Kvn37IiAgAL/++ivOnz+PHj16AAAOHDiAbt26tZrEFQAKGvAQCUJMjZJXwpvMQrplS/h3NSYTPnk2KO5oj3vl2rpf0ErIBBz6KUsRwY4goOhnCPP5GdtKJHKASBgAtdoDOTnWSEoWoKjKwP//evrpp43+HjduHD777DOkpaXB19e31nUpFArIZLIq00tLS1FaWoru3btDJBKhbdu2yMrKAlAxTui9e/cMdZCtBSWvhE+UvBLeUGctYi6SEgthl69GuwGeuNaKO3IJAHRX6tBfcA7titdBUpDZrOsXCqwglgRCo/FCfp4dUlJEyM5u3MD/6n8+z/qM+bl69WpotVo4OzujX79+8Pf3B1BxBVapVOLu3bto06YNkpKS0KlTJ+h0OuzevRvjxo2rMtRTS0dlA4RPlLwS3mTQlVdiRvIL1CjZm4AeI/xwRtO69s12VsAg8XV0LN0AZdHNZlknx4khlQZAp/VCYZEj0u5Jce8eg3EX4saVJzDG8Oeff8LHxwcuLi41LqdUKjF27Fh4eHhAq9Xi8uXLWL9+PWbMmAFfX19wHIcnnngCf/75J6KjoxEYGIjw8HAcO3YM/v7+EIlE+PHHH1FaWooePXoYyglastJSMyh2Jq0WJa+EN1nUWYuYGY1Gj8u74tB3iC+Oi7QtetAkb6kAQ2SJ6KL6BY4lJ5p4bRykUh8w5oeSYmdkZlohKYlBa1SlYfp3e8+ePcjIyKh1vFAAcHJyMnTMAgBvb28UFhbixIkThlIDHx8fzJo1y7BMTk4OLl++jNmzZ2Pt2rXo1asXAgMDsXLlSvj6+sLVteojZVsSxhjUanWVsVUJaQ6UvBLe5JdRZy1ins4dTET3rm644iJCmb7lpLD2IgGGKLLRQ7MTniU7gCb6/SgWu0IoaIPSMlfkZFsjKYlDaWnzDvy/Z88e3Lp1CzNmzHiowfQ9PT1x5cqVaucxxrBz504MHz4cjDGkp6ejXbt2EIvF8PPzQ0JCQotPXoGKURYoeSV8oOSV8KZYRZ1jiPm6fD4d/m3skNPOFpkay91X5QIOA5TF6K3/C/7FURDmmzZjFQltIBIHQa12R16uDZKTxcjP52/gf8YY9u7dixs3bmD69Omwt7d/qHbS09NrfIb9xYsXYWVlheDgYJSVVXRk0+l0EIvF0Ol0aC3Dp6tUqlY1wgIxH5S8Et4Uqy03ISCtQ3xcPhzzVWjb1x231OV8h1NvQgC9lFr0E5xCSNFPEBfkmqRdgUAGiSQAWo038gvskHZP+s/A//fjd8ixPXv24MqVK5g8eTKkUimKiyseTyuVSiEWiwFUDG1VVFSECRMmAABOnToFOzs7ODs7Q6fT4fLly7h+/TqefPLJKu2XlJTg77//NpQiyOVyODk54dSpUwgICEB8fDz69evXTFvLL5WKSr8IPyh5JbwpouSVWICcXBWK/0xEt+F+OFdu3h25OloBA8RX0LHkJ1gVxTeqLQ5CSKX+0Ot9UFTkhPR0GVJSGPRGuan5jY177tw5AKjy0IFx48ahc+fOAIDi4mKjoZ50Oh327duHoqIiiEQiuLi4YOrUqQgKCqrSfnR0NCIiIoxKEcaPH4/t27fjzJkziIiIgKenZxNsmfmh5JXwhR4PS3gz/cczOHIri+8wCKkfDug61A/HBeZVq+0rFWCILA5dyqJgrz730O1IJF7gOH+UlrggM9MKyckc1Dw/jICYtwkTJqBTp058h0FaIbrySnhDZQPEojDg/P4E9OrpgYsOAqh57MjlJBZgiFUGemj+gFvJ3gZ3vBKLHSEUBkKlcvunQ5UAxcWNG0+VWA6RSASJWAyJWAKxSAyJsOKfWCCq+MeJIIYIYgghZkKI9EKImABinQAirQAiLQeRVgBXlSPfm0JaKUpeCW9KKHklFijm9D0EtXVAWpASOVpds61XIeQwUFGI3voD8CveDC6/fsePUKiEWBwITbkn8vJskZIiQk4OJaqWQiAQQCKRQCKWQCISQywUQyISQyIQQSQQQcKJIYYQIgghYSKImAAivQBivfDfRFMjgEgDCDUcROUcBCrOJLGJzLuKhrRglLwS3hTRaAPEQt25lQuXfDVse7kgrgk7cok4IEJZjn44gaCi9RDX8UhOjhNDKgmATu+DwgJ73LsnRVqaaQf+JzXjOK4i0RT9e1VTLBRVXNXkKq5qSiCCCMKKK5tMWJFo6oQQ6bh/kk0BRBoOonJAWM5BqOMAM30eACtvvh9vhNyPklfCG5WGTnzEcmVmlsBqfzLCh/rgook7coUrGAaILqFD8U+QFybVsJQAUqkvGPNFSbEzMjLkSE5u+oH/WxLxP7fO/72qKfr39jlXefv8gURTL4BI98BVzXJApOEg1HBAGd9b1XyYxvw67JHWgZJXwhsd9RUkFq60TIsbu+LQZ7gfjqNxHbkCZRwGS++gc9lG2BZfqjJfInEDx7VBWZkrsrOUSEwEjDt7t+zjyVR1mhVXNCtuo3Mmun3eWlHySvhCySvhjb4FPbmItF6MAef/TEDvPp44Z81B04AfZa4SAYbI76G7eitcyg4artqJRHYQiQKhVrkjN88WyUkCFBRYzvFiznWaxHRosCLCF0peCW/ovEdakovHUxHazglJ/lbIr6Ujl7VQgEGKfPTS/Qnv4l8h0kggkQRCKxyF/Hw7pKZKkJnZfE+oMtRpViaaIuMrmhJBxRVNQ52mXgARE1psnSYhxPJR8kp4o6fslbQwt65lwz1fCbtuTkhQ/1tGIOE49FWq0AfH0b78OISljigsckRS+tNISdaBsfuvKtZ+K1YsFkMqkUAs+qdjkLCiVlP8zxVNESespk5TWHE1UyeEWMtB2IrrNAkhlo+SV8KblljzWnDyF5TeOglNbgo4kQRSz1DYD5gBsaOXYZn8YxtRcv0odEVZ4AQiSNwCYdd/GqQewfVaR8m1I8je+SnkQb3g8tj7hunFV/9C/pGfwDQqKDsOh/2gZw3ztAUZyNjyAdynfwmB1Mp0G0yqSLtXDMVBNToP8YZIqEFfloaOpVegSxQiN0eBRP2Yf65qiuHICeHmZVynKWYCiAx1mv9c0dQAonIBhFSnSQghlLwS/rTEkldVciysu4yBxC0IYDrk/70BGb98AI/nvoNAIgMAiB084TBsDkR2bmAaNYrO/YGMLR/Ac/b3EFrZ1tq+tiATeX/9CKlXe6PputIC5EZ/A8fR8yCyc0Pmb4sg9QmDVUB3AEDOnythP2AGJa7NRK9S4c27KyHO6gKBSAlZuSesJQ6QMSVEZUKwQm3LPADMxPqL27Hh4nakFKQDANo6+WNexHQMCuhV7fIZxdn46NBKXMm4ifjcFDzb9XFEDp1rtMzf8Wfx/v4vkF2ShxFt++KTkW9BIhQDAArVxRj70wuImvwFPG1cm3bjCCEQ8B0AaTiO47B9+/Z6LRsZGWl4nre5aYnF/q5Pfghl2FBInH0hcWkDx9HzoCvMQnnGHcMyinYDIffrDLGdGyTOvrAf/DxYeSnKM2t/Fj3T65C98zPY9n0KIjs3o3na/HRwUisoQvtD6t4WMp+O0GRXDLFUcu0wOKEIVsERpt9gUoVCqMffvmvhUXoOV9h+iOJScDXHDpcLb2D3lW+x+eJi/JawAsfUO3BLeRnZrllQeWrAXIXgFHQ9wRTcrZ3x7oDZ2D39e+ye/j0ifLvgua3v4WZW9cdYuU4DRytbvNr7GbRzCawyX8/0mLvrIzzdeRy2Pb0SMfeuY9OlnYb5yw6vwtOdx7W6xJXj6C4A4QedKZvJ33//jU8//RTnz59HWloatm3bhvHjx9f6msjISGzfvh0xMTFG09PS0mBvb990wd5n3bp1mDdvHvLz803edgvMXavQq0sAAAKZstr5TKdBUUw0OKkCEhf/WtsqOL4ZAisbWHcaDnXKVaN5IgdPMI0a5Rl3IbRxQXnaLSjDhkJXVoT8oxvhOmWpaTaI1MpapMVh7x/geO8IsjzaY5XTFWw+VYJOgluI8Z0CTtoe3n5pKCu4gNSk60i9d71KG1ZWtvBwDYKTnQ/s5C6w4mwgLheDK9SDldPQRPUxLLCP0d9v95+FDRe34+K9qwh2rnqcedu6Y9HQ/wMAbLm8p8r83NIC5JTmY1qX8ZCJpBgW1Ae3sxMAAGdTruBS+k0sHvaa6TeEEFItSl6bSUlJCTp16oSZM2fi8ccfb1Rbbm5udS9kAYQCDtoWfOuUMYa8Q2sg9WoHibOf0bzSO2eQvWM5mEYNodIerpM+qrVkQJVyDcWX98F95tfVzhfKlHAa8xqyd60A05ZD0WEw5G26InvPl7DuOhbaggxk/v4RoNfCts9UKEL6mnJTCQBbsRaHPVfDPu04AICh4qrUj4OA5785gm5pcbgx+D1kpHgC8IRLUBEk4utIv3MW2vseclBaWoA78edwB+eqrMPRwQtuzgFwtPGEjcQJMqagMoQ66PQ67LpxGGUaFbp4dnioNhyt7OCidMTf8WfRz687ziRfxsSwkSjXafDevs/x2ah3IBQITRw5IaQmVDbQTEaNGoXFixfjscceq9fy69atw6JFi3Dp0iVwHAeO47Bu3ToAVcsGUlJSMHnyZDg4OEChUKBbt244ffp0te3Gx8cjMDAQL774IvR6PcrLy/HWW2/B09MTCoUCPXv2xOHDhwEAhw8fxsyZM1FQUGCIITIyshHvgjGpqGXvfrn7V6E8MwFOj7xVZZ7MpyPcZ34Nt6c/hcy/K7L++AS6kvxq29GrS5G963M4jny11gTXqm0EPJ77Fp6zv4dd36egSroMTVYilJ1GIHvHcjgMmQXn8e8hZ+/XNa6LPBxHiQZ/e6yEffrxfyf+c0t1nyIOhYPCIcxMQujW/0OQe8XV+MJsa2Sn9YDcYQ58Oo6HrYtHnevJyU3B1ZtH8PfZTdh1/Gv8dmLZv2UI5Ttwm8oQDK5n3UXwihEI+Gwo3tv3Ob6fsBhtnfweqi2O4/DduEX46sR6DPnhGbR3DcKksDFYeWoj+vh2hUwkxYSfX8KA75/CuvO/m3ZDyENpKeV1pHqt98xm5iZNmoTY2FhER0fjwIEDAABb26qJS3FxMQYMGABPT0/s2LEDbm5uuHDhAvT6qrcXY2NjMXz4cEyfPh3Lli0DAMycORMJCQnYvHkzPDw8sG3bNowcORJXrlxBREQEvvzySyxYsAA3b94EACiV1d/+fhhSsRBQaete0ALl7l+Fsjun4Tr1Y4hsnKrMF0hkEEg8AHsPSD1DkPq/WSi+vA+2vZ+ssqw2Px26ggxk/v7hvxP/qblIXP4oPGathtje3eg1TKtB7r7v4Dj2DWjz0sD0Osh8wgBUdBhTp92EVWBPE25x6+Us0eCg239hk3HWaPr910E/6ZqKpSdlEJSp4B31FpRjX8WlslDodQwatRCZyW0AtIFHu1ww7WWk34kBq+YYrolOV47U1OtITa2pDKEtnOy8/y1DUIvBFbXsMoQABx9Ez/wBhapi7L11BK/tXopfp37z0AlsD6+O2D39f4a/43KT8fvVPxE94wdM3PQqnuv2BAb698TQH6ejp3dnhLoEmGhLzJjYtBcg/Pz8kJiYWGX6Sy+9hG+//bba17T08jpSPUpezZRcLodSqYRIJKq1TGDTpk3IysrC2bNn4eDgAAAIDKza4eDkyZMYO3Ys3n33XcyfPx8AcPfuXURFRSElJQUeHhVXfebPn4/o6GisXbsWS5cuha2tLTiOa5JShZZ45ZUxhrwDq1B66yRcpyyD2K6e7xurqH+tjtjRC+7P/tdoWv7Rn8HKS2E/5IVqk+P8E5sha9MVUrdAlGfcBfT/DprP9FqgAYkRqZmbtBwHXL6GMvNClXnsvs4st0U5iB/dBX6/nwEA2O/6Br26DkeMx+MoLfr3B1xumgOAgbDz6g1ru7vITjiF0sL8RsVYUYZwFndwtso8RwcvuLkEwtHaEzYSR8iZAsJSAViRzuLLECRCMfztK4ao6+QegktpN/DjuV/x8cg3G902YwxvR3+KDwa9DD1jiM24jTHBAyEXy9DLuzNOJce0iuRVYOLk9ezZs9Dp/j1XxcbGYtiwYXjiiSca3FZLKa8j1Wt52UMrExMTg/DwcEPiWp2kpCQMHToU77//viFxBYALFy6AMYa2bdtCqVQa/h05cgR3795t8tjl4pZXI5a7/zsUXz0Mp0fehEBiBV1xHnTFedBrKmoa9eUq5B35CerUG9AWZEKdfgc5e7+GtigbVsH/1qFm7/oceUfWAQA4kQQSZz+jfwKpApzEChJnP3D/DNdTqTwrEaU3/oZd36cBACIHL4AToOjSPpTePQtNTgok7kHN84a0YJ4yNQ66fAllVtXEFfi35rXSkqBr4Fz+/aEhO78P3c5/AmeXqtcQyoqkyExuByaeAe8OU+DsV78xgBsqJzcFV28cxt9nN2LX8a/x64ll2Byz5J8yhJ0VZQhuFWUIcBVZdBkCA4O6hh+IDbX58m7Yy20wPKgvdKzih6BGrzX8V6ev+QlrLQknMe053NnZGW5uboZ/u3btQkBAAAYMGFDt8uZeXrdy5UoEBQVBJpPB1dUVEydONNVb1epZ7pmIAKi4QlsXZ2dneHh4YPPmzXjuuedgY2MDANDr9RAKhTh//jyEQuOTkCnLA2piZeITnzkovljRUzkj6l2j6Y6j50EZNhScQABNbgqyth+ErqwQQrkNJG5BcHvqE0icfQ3LawuzAK7hvy0ZY8j987+wHzzLMK6sQCyF4+h5yN3/HZhOUzHGrHXVq7Wk/nzkKvzpuALyrNgal2EPjCJUwKlwdGww+v6YbZgmuheHDn/MQ9LjS3D3nrRqG3oBslLdAYyBc8BASGXXkXH3LDSqpn0kVkUZwjWkpl6rMk+hsIe7SxCc7LxgJ3eFFWcNcbkEXIEOTGMeV/Q/PvI/DGrTEx42LiguL8WO64dwMikGG5749J/5q5FelI0vx/7H8JqrGbcBACWaMuSU5eNqxm2IheIqZQbZJXn4+sR6bH264ja2ncwaQY6++OHsr+jv3x3HE8/jlV5PN8+G8oyTNN31r/Lycvz88894/fXXaxySy5zL686dO4e5c+diw4YNiIiIQG5uLo4ePWqqt6fVo+TVjEkkEqNbKNXp2LEj1qxZg9zc3BqvvsrlcuzatQujR4/GiBEjsG/fPlhbWyM8PBw6nQ6ZmZno16/fQ8fwsKwkLW/38317V63zOZEELhP+U+syAOA29eNa5zuNqX5YHo7j4Pb0p1WmWwX2gFVgjzrXS+rWxkqFPfafQZZdNbG734NXXgHgG5dL6BMaAO76v3c2OHUZfDe9Dutxr+NyUSD0NdyuL8pVoAjdILUNh3vbZBRmnkF+ekrjNuYhlJTk4U78GdzBmSrzHB29K0ZDsPaEjdQRcr0CwjIhWKGmrqfemlR2SS7m7VqCzJIcWEsVCHUOwIYnPkV//4qHdmQU5yC1MMPoNSPXPWf4/yvpN7H92gF42bjh5Iu/GC238ODXmN1jEtytnQ3TPh/9Ll7fvRQ/nv8dc3pMQbhHuybcOvNh6iuv99u+fTvy8/MxY8aMGpcx5/K6pKQkKBQKjB07FtbW1vD19UV4ePjDvBWkGi0vezBTxcXFuHPn34Hq4+PjERMTAwcHB/j4+FT7Gj8/P8NyXl5esLa2hlRqfHVmypQpWLp0KcaPH49ly5bB3d0dFy9ehIeHB3r37m1YTqFQYPfu3Rg1ahRGjRqF6OhotG3bFk899RSmTZuGzz//HOHh4cjOzsahQ4cQFhaG0aNHw8/PD8XFxTh48CA6deoEKysrWFmZ5ilNCmnLu/JKWrYgRRl22S6HNOdmPZaumrwyDtgwVIxpVftVweGPFejZcywuOj0CVUnNHRm15UJkJvsB8IN7SD44dgXpdy5Cr+O/82NOTjJycpKrTBcKJXB3C4Srox/srdygENlDppGBKwFYLdv6sD4b/U6t878Y816Vaclv/12vtr99dGGVaeEe7fDXrJ/rF1wLIpA1XQrxww8/YNSoUYaEsTEaUl63ePFivPbavxcH7i+vu59arYajo2ON7Q0bNgy+vr5o06YNRo4ciZEjR2LChAkm+/5s7ajmtZmcO3cO4eHhhl9er7/+OsLDw7FgwYIaX/P4449j5MiRGDRoEJydnREVFVVlGYlEgn379sHFxQWjR49GWFgYPv744yplAEDFrYy9e/eCMYbRo0ejpKQEa9euxbRp0/DGG28gODgYjz76KE6fPg1vb28AQEREBObMmYNJkybB2dkZy5cvN9E7AljLxHUvRIiZCFWWYrfNx5Dm1idxNR5t4H67lHdQ0r9ztfPkp3eh+5UVcHSuX1KQl2GH3Mx+sHGfA5+Oo6Gwr/nLlE86XTlSUq/h/OU9OHDqR/xx7HNsOb0Em2OXYFfm/3CB+wtJ9ndQ4F4IjQcDHEXgTNwZiJieQNY0FyASExNx4MABPP/88yZpr77ldT169MDmzZtRWFhomH5/eV1MTIzh3/Xr1/HVV1/V2J61tTUuXLiAqKgouLu7Y8GCBejUqRONSGAiHGuJz+gkFuHDndfw4/HaH4lKiDkIsy7B74plkOTH1fs1F3y6YLowu9p5HTSuWPh1Flh5ebXz9XIlEiYsQcK9Bl7Z4hicPDJRXnIRmQnXLfsxdhwHJwcvuDoHwMnGE9bi+0dD0DZrGQKpnsvccEg8TN8/IjIyEqtXr0ZycjJEotqPgaVLlyIqKgpXrlwxms5xnOFJlj/99BPmzp2L+Pj4aq++Vg63dfz4cYwePRrl5eWG8rpbt24hODgYf//9d43ldZs2bcLs2bNRVFRUY5wlJSWws7PDli1b6j3eO6kZlQ0Q3jgqJXyHQEidutgWY4tsKcT5CQ16XXU1r5VixRlIHt0FXtur1o0CgKCsGG02/R9sJryNKwU+YPVN1BiH7FRXACPh5DcAcsUNZNw9jfKy0gbFbhYYQ3ZOMrKrKUMQiSRwdw2ES2UZgtAeMq0MXDEDK20dPf3NQVOUDej1eqxduxbTp0+vM3EFzLe87tChQ4iLi0P//v1hb2+PPXv2QK/XIzi4aUYOaW3ovgzhjaOCkldi3nrYFeIX6UcQFyQ0+LUPjjbwoCXBN8A51lyDBwBO2z5BT/VBSK0afnu2OF+OrNRwiK1nwSdsIuw9fOt+kYXQasuRfH8ZwvF/yhCuLjUuQ/CoKEPgHMUmH1CfAAKl6Uu/Dhw4gKSkJDz77LP1Wt5cy+vs7OywdetWDB48GKGhoVi1ahWioqLQvn37xr1BBACVDRAe7b+WgVnrqz6/nRBz0Nu+ABtEiyEqSn2o15/17YZnBZm1LvNmWmd0X1f3MaDx74DYrnORl924cUrtXAog5GKRfvcCdBrTjHlqMTgOTobREDxgLXaCnFlBWCoEK2re0RBaAk4qhOeiCL7DIK0UlQ0Q3lDZADFX/R3ysZb7EMKi9IdvpIaxKe+3wv0SooL8gNsJtS4njo9Fp6w3EffoYiTde/griPmZtgD6QOnSA7aO8chNPY3inKyHbs+iMIbs7CRkZydVmfVvGYI/7K3coBTZQaqRgSsGWCn/oziYI6ENnb8Jfyh5JbxxUlQdlJ0Qvg12zMP3WARhSe1XTetSn1taOjBsGaHApNt1LysoLkBA1FzYPP4+rua4NaovlrpUjMzStgCC4Nk+C1rVJWTExVp2B69GqCxDSK7moQxKZeVDGXxgK3OGgrOBWC0GK9QBZvJQBj4IrSl5JfyhsgHCm2K1Fh0W/sl3GIQYjHTOwUrdIghKqx8loCFO+3fH88ioe0EA6w+3g+zk5Xq3XTxwCmJkA1CuMl3nJCtbFRTWN5EZdxrqkmKTtdticRycHH3g5twGjtaVoyFYtZrREOSdneE4OYTvMEgrRVdeCW+UUhFkYgFUrfjqBTEfY52z8bV2EQRlOSZpr7bRBh70VUQe3j4rArT1u0WtPByFHkE3cSVsDgpyTVO7WlogQ2lBJwitwuDd5h5K884hJ6X+Q4O1OowhOzsR2dmJVWZVlCEEVYyGoHCDUlhZhtByRkOgsgHCJ0peCa/cbeWIzy7hOwzSyo13zcQKdSQEqnyTtdmQW1rnJWlIHxkOt11n6/0aye0LCM94F3fGfoiUew2PryZ6rQBZKV4AvODathAi4TVk3D0HbQ1j0pKqKsoQriI59WqVeUqlPdxd28LJ1ht2MmdYWWgZgtCayr4If6hsgPDqmR9O4+jtxt+iJeRhPeGWjuVlkeDUhXUv3AAn/HtiNtLqvbyLXoFvVwMsv6BB62Ech4wnInEty6lhGXMDiOUa2DslIj/tDAqzGtGJjdTsgTIEG4kjZDorCMuEYIWaJvtsH5bDlGBYdXLhOwzSStGVV8IrHwd6zjPhz1T3NCwpjQSnrvnJOA+N4xqUcGQKSnBxbDg6/1z/q68AwDEGt18WQjF0OmKEvaBRm/7qnaZMjMzkQDAEwLNdDnSay8i4cxms3k9PIHWqpQxBLJbBzSXArMoQ6Mor4RMlr4RXlLwSvkz3SEVkcSS48qYpW3mYC2WfeV3GRj9vsISqT5Wqi/WBn9Az9CYuhzyLwrymGcOVA4ecNCcAg2Hv3QcK29vITjiNsqKGXS0mDaPRqGosQ7BWOsLNNRDOtt6wNZQhiMAK9U1ahiC0p+SV8IeSV8IrSl4JH573SsZ/ChaB0zTdY1NZA6+8AkA5p8O2UbYY/13Dk1cAkFw/hfCMeNwesRD30pr2PnNpkRSlRR3ASdvByy8dqoLzyE6qx5hfTeDEnUScvJuI3JIyAICbrRJD2wUh1L3m29rHbyfg+J0E5JaWwd5KjiGhgejm52WYfys9C1svXEWxWo32Hq54oltHiIQVY+yWlWvw1YHjmD2gJ+wV8qbduDoUFeegqDgHt3HaeAbHwdnRF27ObeBg7QkbsQNkzArCkn9GQ2jM7iHiILSl5JXwh5JXwitvSl5JM3vROwFv5X0ETlvWpOt52Nxgk90NjO7eAZKzsQ/1emFuBoJ/mQubJxbhRrrdQ0ZRf0wnQHaKBwAPuAQWQyK9jow7Z6FRq5p83ZVsrWQY3TEETsqK88m5hBSsO34Orw3rBzdb6yrLn7iTiD1XbuKJbmHwdrBDUm4+fjt3GXKJGO09XKFnDBtPx2BwSACC3Zyx/sR5nI5LQp8gPwDA7ss30DvAh/fEtVaMISs7AVnZCVVmicWyiocyOPjCTuEOpdC2ogyhiIGV1V2GIHKQgRPUfzQNQkyNklfCKx9HSl5J8/k/nzjMy/kInE7d5OtqyFBZD/q2bzFeu1j/obMexOm08Nj8HyhGzMIlfRdom6kXe2GOEkB3yOy7wN0lEQUZZ1CQYcKhEGrQ3sPV6O9RYSE4cTcJiTl51Sav5xNT0CvAB519PAAAjkorJOXk4a8bd9HewxUl6nKUqMsREegLsVCIdh6uyCisGPs2PjsXKXkFeKxLhybfrqai0aiQlBKLpJSqP5CslY5wdw2Ck60XbOUusIJ1lTIEkaMZJ+2kVaDklfDKRiaGrVyMgrJW9px10uze8LmLV3I+Aqcz/yGfTspS8MywznDae65R7dj++T16dOyHy/5Po7ig+R5zqlELkZncBkAbuIfmAroryLgbA72u6TsX6fUMl1LSUK7VwdfRvtpltHo9xALjx+yKhUIk5+ZDp9dDKZXARibFrfRstHV1Qnx2Lrr5eUGr02Pr+Vg82b0jBC30ymNlGcKtB2fcV4YQ4NwTTnwER8g/KHklvPNzUuBScj7fYZAW7D2/W5iVuQScvvl+JDGuccnN0g7x+OKYNVhR40ZCkF0+iq5p8bgx5D/ISG/+0QHy0h0ADICNR2/Y2N9BduJplBbkmXw9afmF+ObQCWh1ekhEQszo07Xaq64AEOzqjNPxyejg6QZPexuk5BXgTHwydHqGEnU5bOQyPNO7C/6IuYbtMVcR6uaCHv7eOHj9LgJdnCAWCvHfgydQUl6OPoF+6PtPOUGLdl8Zglu/9nxHQ1o5Sl4J74JdlZS8kiazwP86ZmYsA6dvviuPQOPKBgAgRVSA2Ee6oP2mM42ORZiVgtDf/g82T3yE22nKRrf3MFTFEqiK24EThcCrQybUxReQlXDDZO07Wyvx+rB+KNNocCUlHZvPXMKLA3tVm8AOaxeEIpUaXx88DgBQyiTo5ueFwzfjwP3zo8Pf2QHzhvU1vCarqBgXElPw2rB+WPnXSfRr649gN2d89uffaOPsAA87G5Nti7lz9PTmOwTSylHySngX4tZ6TvqkeX3kfxVPp38MjjX/WJjMBHeVP/G5jA3eHmDJja8bFWjL4R31NqzHvIxL6vbQafkZ9Z7pBchOdQMwGk4BAyGXX0f6nTPQqBrXgU4kFMDJWgEA8HawQ3JuPo7dTsDEbmFVlhWLhJjUoxMmdgtDkUoNG5kMp+KSIBWJoJBWfewpYwy/nruCRzq1AwNDan4hOnq5QyISIsDZAXFZOa0qeXXwouSV8EtQ9yKENK0Q9+pv7RHSGB+3uYKn05fxkrgCjb/yCgAqTos9o5xNEM2/7HZ/i565W2Flzf+1i+JcK2SldoXU5gX4dHwcdm6mS4oYKmpbayMUCGBnJYdAwCEm+R7aebhAUE25x5n4ZCgkErT3dIX+n5xf90/bOj0zTGsNrGztIFfSOZvwi5JXwrtQuvJKTGxFwEVMuvcxOB6fAGWqfGat41Vow0NN1FoF2YUD6HZuGVxchSZt92FpNUJkJvtCpX4C7iHPwiO4OwTC+ifXey7fQFxWLnJLSpGWX4i9V27gblYOuvwzmsCeyzcQdTrGsHxWUTHOJ6Ygq6gESTn5+PnkBaQXFGFUWHCVtotUahy4dgfjwyvqPK0kYrjYKHH0djwSsvNwJzMbfjV0DGuJHDy96l6IkCbG/09v0urZKyRwtZEio7Dphy8iLd83gecxNmUFOHN7GHwjrB5QjpcvCYA6riQ2hCgtAe23zYP1xCW4e09msnYbKy/DDkA/WLv3gq3DXeQkn0FJXnatrylWqxF1OgaFKjVkYhE8bK0xq18PtHWruGpdqFIjr/TfsgQ9YzhyMx5ZRVcgFAgQ4OyIVwZHwEFRdei+Py5ew4DgNrC1+vc9mty9EzaficGx2wkYEBwAH0c7U2y6RXDxbcN3CISAY4y1nDM8sVjTfjyDv29l8R0GsXCrA09jRMpXfIcBADjQth9e01R9Tv3D+t+5TrDbf95k7d0v99F5uFzSFnqdGX4dcAyO7pnQlsUgI/4aQF9ZvBr96nyE9h3IdxiklaOyAWIWQt2ohoo0zo9BJ8wmcQVMU/N6v487J4FTKEzaZiWHHV+iZ9EuyBVmeDOOcci554qCvBFw8p8D7w6DIbVqmveB1M09sGppBSHNjZJXYhZC3anulTy89UFHMTj5v3yHYcQUow3cL06Uh1tjm258TfmZPeh+6TM4uZhhAvuP4jw5slI7Q6R8Ht4dJ8LB04/vkFoVubUN7Nzc+Q6DEEpeiXno5G3HdwjEQkUF/YX+yd/xHUYVpr7yCgDL/GPBubvWveBDEqXcRocdr8Pfw7yfeKfTCJGV7IPS0sfgFvwcPEN7QSgW8x1Wi+cWEMR3CIQAoOSVmAl/JwUcFVXHVySkNr8GHUDv5O/5DqNaTVGZWcyV49AYzyZo+V8CVQn8N81DJ/tEcBbwDZGfaYuc9AgonOfAp+NYKB1NO7QY+ZcblQwQM2EBpybSWnTxbT3DzZDG2x4Uje7JP/IdRi1Mf+UVAL5zvgx9h7ZN0vb9HLctR0/VfsiszGM4rbqUl4mRmdwWWv3T8Gz/DFwDOoKzhOzbgrgHUfJKzAMd2cRsdKXkldTTrqDd6Jy8nu8wamXqmtf7/TgYQDWD6Zua1Ynt6H7tGzg4mW8dbFUccu45oyB3KBx8Z8M7bChkNKi+SbgFNv2PJkLqg5JXYjYoeSV14TiG6KA/0CF5I9+h1Kkpal4r7VPEoXBgeJO1fz9xwlV03PsmfD34eVJZY5QUyJGV0hEC+XPwDnsSjt4BfIdksezc3OnJWsRsUPJKzEaYpy0kQtolSfU4jmFf4DaEJG/hO5R6aerRSD/teg+cvHkeLiAoKUTAprkIc7zXHBd8TU6vFSArxQslxePgGjQLXu36QCShGvuGcAugq67EfFCmQMyGTCxEOw8aMotUJeT0OBT4K4KSf+M7lHpryiuvAHBTnI340R2bdB0Pcv59CbrrjkAit4w62OoUZFsjO60nrBznwKfjONg409BP9UH1rsScUPJKzEo3Kh0gDxALGP4K2AL/5O18h9IgTVnzWmlJ0DVwLk5Nv6L7KP/+BT1vrYKdo2UPTVWuEiEzOQBq7WR4tJsOt6DO4AT0lVgTz5CmG2OYkIaiI5WYlV5tHPkOgZgRqUCPv9pshE/KTr5DMUsFnArHxvo2+3rFd2PQed878Paw/Ee1cuCQm+aI/OzBsPOaA5+w4ZBb2/IdllmRW9vAxa8N32EQYkDJKzErvQMcIRZaYFEdMTm5UIfD/hvglbKH71AeSlOXDVT62uUSWEjzd0QSFOUiMOpVtHPOaqpRwZpdWZEMmSkdAOlMeIdNgZMv1XkCgHeHTuAssdiZtFiUvBKzopCK0MWHSgdaO4VQjyO+6+Ce+iffoTy05romyThg4zB+Oh9xjMHt10h0505CLG05XydMJ0BWijuKC8fCJXA2vNr3h1jaPJ3jzJFvWGe+QyDESMs525AWo39bekJOa6YQ6XDEdw1c7h3kO5RGac4b6juUt1HSr3MzrtGY9aGf0TPxR9jYW3YdbHUKcxTIvtcNMrsX4NNxAmxdm/YJZ+bIr2PzDMvWUBzHYfv27fVaNjIyEp07d27SeEjzoeSVmJ3+QZS8tlbWIi2Oev8PTvcO8x1K4zXzbdbPe2aB43H4J8mNswg//D483Vvm7WVNuQiZyf5Ql0+CR+gMuLftCoHQckddqC87N3fYOLuYtM3U1FQ8/fTTcHR0hJWVFTp37ozz58/XuHxNiWdaWhpGjRpl0thqsm7dOtjZ2TXLukjdKHklZqeDpw0cFTQGY2tjL9biqNcqOKQd5TsUk2jurkyx4gwkj+7czGs1JszLRNstryLENY/XOJpabroD8rIGwNZ9DnzCRsLKzoHvkJqMf+duJm0vLy8Pffr0gVgsxt69e3Ht2jV8/vnnD5UYurm5QSqVmjQ+YhkoeSVmh+M49Als3uF/CL+cJRoc8fgWdukn+A7Foi0JvgHOkd9EitPr4LHlfXSTnIdIYpqvmD8vbsIrq4fgt+Pf1rjMrXsxeGX1kCr/0vOSDMtcTzmHRZunYf7aR7H+r4+h1WkM88rUxVj0/+3deVyVZf7/8dd9zuFwDuewyw6CiOAGihuJ5ZYbhmVpaWPpODUtU9nmNG1jWqZpmzaTlc1vtBrFFpcxtzFzNDMzlXApU1MQUZRNkH055/z+4BuNAYps9znweT4e51HCfd/nDQq8uc51X9eqqeQVXmhwrtJiZ7IyumPTTCO45+/wDevWuA/QjnWKbd7yumDBAkJCQli2bBkDBgwgLCyMG2+8kc6d677pcPny5cyZM4eDBw+iKAqKorB8+XKg9rSBjIwMJk+ejJeXFyaTiX79+rF37946r5uamkpERAQPPvggVquViooKnnrqKYKCgjCZTMTFxbFjxw4AduzYwfTp0ykoKKjJMHv2bACWLFlCly5dMBgM+Pn5MXHixOb6VIkrcKQNq0U7MjjSh/UHz6kdQ7QCX+dKvvT7G64X9qsdpVmpsYhUrqaE7xJ70/+DPBWe/XJuW/9JXM/jHOw8laKCyqufUI/TWT/xzdGNBHk1bKmmv05ajlFvqvmz2VC97JXVZuWDL+czMnYy3YP7848v5rD76EaG9BwPwLq973N993F4ufpdc0abTSHnrD+QQIfwIRhdfuLCye+oKC255mvZE52zMyHdo5v1muvXr2f06NHcfvvt7Ny5k6CgIP70pz/xxz/+sc7jJ02axJEjR9iyZQvbtm0DwN299lJmRUVFDBkyhKCgINavX4+/vz/JyclYrdZaxx45coRRo0Yxbdo05s+fD8D06dNJS0tj1apVBAYGsnbtWsaMGcPhw4eJj49n0aJFzJo1i2PHjgFgNpvZv38/M2bM4KOPPiI+Pp68vDx27WobrxzZOymvwi4NjfJBo4DV8ZeRFFcQYKhgm88iTFkpakdpdq2xSUFd3gg8SFKXMDiRpk6A/+F85Gv6Zp7k+KhZZGbWLhFXU15ZyvLt87hz8BNsSV7RoHNcjZ64OJtrvb24rICisnwGd78FJ52e6NCBnL94GoCT54+Qnn2cSdfPuOaMv1V00YWii33Qu/bCv8sZCrP3czEz/eon2qGOPWKafRvdU6dO8c477/DEE0/w7LPP8t133zFjxgycnZ2ZOnVqreONRiNmsxmdToe/v3+91125ciXZ2dns27cPL6/qVx8iIiJqHbdnzx4SExN55plnmDlzJgAnT54kKSmJjIwMAgMDAZg5cyZbtmxh2bJlzJs3D3d3dxRFuSxDeno6JpOJxMREXF1dCQ0NJTbWPm9ua2tk2oCwSx3MzvQLa7vzyAQEG8r5ssMbmLJT1I7SIlprndffsmDjk1Gmqx/YSrS5mUR9+iiR/oXXfO7HXy+mZ8fr6Brct8HnLFh9P89+dDtvfT6T42e/r3m72eCBm4s3RzP2U1FVzsnzhwnyDqfKUsnHuxYxefBjaDTNdwNWVaWWrDNhlJZNJKDrHwjsOgCtzrHGi5p7viuA1WqlT58+zJs3j9jYWO6//37++Mc/8s477zTpuikpKcTGxtYU17qkp6czYsQInn/++ZriCpCcnIzNZiMyMhKz2Vzz2LlzJydPnqz3eiNHjiQ0NJTw8HDuvvtuVqxYQUmJY4+2Owopr8JuJfSs/7ds4djCjGV84f0aLjmH1I7SYtR80eAzt2OUDYxRMcHlNFUVBK96mj4uR9A6NezHzv6ft3Mm52duHnBvg453d/HmzsFPcO/IF7h35Gz8PEL424Y/8/O56n9jiqJwz4i/siX5X7z8yR8I9o5gYFQCX6QkERXUB73WmTfWzeDFVdPYeWRdYz/UOl284EHehesx+z9Ix5ibMHna/5x+RdEQ0f+6Zr9uQEAA3bt3v+xt3bp1Iz29aaPTRqPxqsf4+PgwYMAAVq1axaVLl2rebrVa0Wq1HDhwgJSUlJrH0aNHWbx4cb3Xc3V1JTk5maSkJAICApg1axa9evUiPz+/SR+LuDopr8Jujenp39qrDYlW0NmllC2eCzHm/qB2lBal9oyXxfEXwc5G+jw2vUNc9qeY3K6c62JRFqu/eZtpw5/BSdewl639PEIY1O0mQnwiCffvwaQbHqVHxzi2Hfqk5pjOAdE8ddsS5vxuBZNueJScwky+O76NxP7T+eC/8xnUPZHHb1nE5gMfcTa3/hG3xiovdiLrTBQW5W6Ce96FX3iPVl9SraGCu/XA7NX823UPGjSoZt7oL44fP05oaP3bHOv1eiwWyxWvGxMTQ0pKCnl59c/3NhqNbNiwAYPBwOjRoyksrH41IDY2FovFQlZWFhEREZc9fpkmUF8GnU7HiBEjWLhwIYcOHSItLY3t27dfMatoOimvwm4FuBvpHeKhdgzRjLqaS9jkvgBD3k9qR2l5KpeSA/pMzo+xv/l3hpTt9N07Dz+/+l+iT88+TmFpPgtXP8CMpSOZsXQkP2ceZOeRtcxYOhKr9cpF5hdhft3JLjhb5/tsNhtJX73JrQMfwGqzkpHzM7GdBuNq9KRLYAwnMlvwVQGbQs5ZXwoujsY77AFCeg7H2VR7nq6aouIHt8h1H3/8cb799lvmzZvHzz//zMqVK1m6dCkPPfRQveeEhYWRmppKSkoKOTk5lJeX1zrmzjvvxN/fn/Hjx7N7925OnTrF6tWr2bNnz2XHmUwmNm7ciE6nIyEhgaKiIiIjI5kyZQpTp05lzZo1pKamsm/fPhYsWMCmTZtqMhQVFfHll1+Sk5NDSUkJGzZs4K233iIlJYXTp0/z4YcfYrVaiYqKat5PmqhFyquwazJ1oO3o4VrMevN8nC8eVztKq1B75BVgbo/jKB6178xWm+7CabqtfZSIgNI63x8V1Idnb/8HT09cWvPo6BNFvy438vTEpQ2em5qRcwJ3l7rnQO75aRMmgxsxYfHYbNU3k1msVTX/tdVxl3pLKM43kn22NzqXe+gYfTteQZ1a5XmvRKPVEXndoBa5dv/+/Vm7di1JSUn07NmTl156iUWLFjFlypR6z5kwYQJjxoxh2LBh+Pj4kJSUVOsYvV7P1q1b8fX1ZezYsURHR/PKK6+grWMjCbPZzObNm7HZbIwdO5bi4mKWLVvG1KlTefLJJ4mKiuLmm29m7969hISEABAfH88DDzzApEmT8PHxYeHChXh4eLBmzRqGDx9Ot27dePfdd0lKSqJHjx7N9wkTdVJsNps9fI8Vok5n8kq4YeF/1Y4hmqi3WxGfGufjVJCqdpRWs6rnKF4uVn+E+bkzsfT61z61Y9Tr4rhHOVgShdVy5R9Fi9Y/QbB3ZyYOqh6h+/fef1BQnMPU4U8D8N9Dq/Fy9SPAKwyLpYrvTmzji5Qk7h05m97hN1x2rcLSi7y65iGeGL8YD1P1jn5zP55On87D6Brcl7c3/YVHEl8jzLdrC3zEV+fucwmd9gfO/7wfS2XjlxlrrE69+3LbM3Na/XmFaCj7mhAlxG+EeLnQM8iNI2cvXf1gYZf6uBfyifPL6Aocc7mgxlJrtYHfejX4ECvCQrClnVE7Sp08P19MXP8xHPS7lZKiqgafd6kkl7yirJo/V1krWfvtexQU5+CkcybAM5QHE+bRo2NcrXM/2/02N/a6o6a4Atw17C989N8F7DiyhhG97lCtuAIUZLsBAzH59MOjQxoXz+6lMDfrquc1l5aaMiBEc5GRV2H33t15klc2qz+CJa5dnMclVji9hK6w7nmHbdnK6NHMLzqqdgwApuR345Z3Dqsd44qqgiL4cdCfyclqeIFtP2x4B+ZiKU/hwskjNdMcWoLOSc+D7/8LvdGlxZ5DiKaSOa/C7t0WG4RWYx+jWKLhrvcqYKXuxXZZXME+5rz+YoXHUSr62/c8PN3Zn4n+92OEB1aoHcUOKeSe60B+7gi8Qh+gY/RIDGa3FnmmTrH9pLgKuyflVdg9XzcDN3Sx/3URxa+Gel3kA2U22qL2vMWvff3C9fb1xVDHzSv2RCkvJWzl4/RyT0Ujv7DWqbjAQFZGNBrDHwiJnoR3SOdmvb5MGRCOQMqrcAi39w1RO4JooJEd8vgns9EWX1A7iqrsaeQVYI8hg5xR9rd0Vl28//0aA0o2YzDJbRn1sVo0ZGcEUVx0C35d7iO4+/Xo9M5NuqbeaCS8b/9mSihEy5HyKhzCiO6+eLg4qR1DXMVYnxzes7yApiRb7Siqs7fyCjCvZyqKq6vaMRrE5dvPGXD4Tbx8pMBeTUGOmZzMAbh430/HmFtw8wlo1HU697sOpyYWYCFag5RX4RCcdVpu7hWodgxxBbf4ZfH3yhfQlOaqHcUu2GN5zdAV8ENiN7VjNJgu/SdiNs4kNFBu4mqIijIdWWc6U141mcDu0wjoEouiafiP+Zjho1swnRDNR8qrcBgydcB+TfS/wKKyF9CUXVQ7it2w2em2n6+EHkIJcZxfBDUlhXRe+SjRXhlqb1rmMBQU8jK9uZgzDI/gB+kYPRqjm8cVz/EKCiG4e8/WCShEE0l5FQ4jOtidrv6O8ZJnezI5IJNXS2ehlBeoHcXO2OPYK5QpVWxO8FU7xjXzWTOfAVX/xdlo3zed2ZvSQmeyMnqA/veE9JyMT2hkncf1GjGmlZMJ0XhSXoVDmdxfRl/tydTAc8wvfgGlvFDtKHbHXjYpqMs/vY9Q1dtxpg/8wrTrMwYcW4Knt8yDvVY2i4bss4EUXkrEN+I+QnoMxslgAKrXdu0++EaVEwrRcFJehUOZ2C8EV2f5wWUP7gk6w5zCF1AqitSOYpfsc9z1V0uHVsA1zIe0F06nDtHrP38hJNDeP8P261Kumexz/TC430fHmFuJGXkLBrNZ7VhCNJjjfecS7ZrZWceEvsFqx2j3Hgw5zfMFs1Eqi9WOYrfsvVrtMJ4m/0bHWDrrtzRF+UQkPUIPnwv2tpyuQ6ms0JF1phPdh9yqdhQhromUV+Fwfh8fJjduqOiRjqk8dXEOSlWp2lHsmr2XV4BXeqejuDjmbkqKzYbfpy8ywLYbvUHmwTaWXyc3/MJaZrcuIVqKlFfhcMI6mBgW5Xg3nLQFT4ae5IncF1GqytSOYvfsdbWB/3VKd5HjiY59h7l5x0oGnPoH7l6yDnRjxAyTV7KE45HyKhzS7+PD1I7Q7vwl9AQPZ7+IYilXO4poRvPDj6AE+Kkdo0n0x/cT++WzBDnOCmB2wcVdT+e+MhAgHI+UV+GQBkf6EOErNxi0lr92+okHsl9CsVaqHcVhOMK0AYAipYLtNwWpHaPJNAU5RK6aQTc/2SSjoXrcEIRWKzVAOB75Vysc1jQZfW0VL3b6kT+cfxnFKrscXQtHKa8A7/gcwtqz7vU/HYlitRDw8Sz66/ah08uPtyvR6BR6Dnb8X1pE+yRf3cJh3d43mA5mvdox2rR54Ye5+/w8FJtF7SgOx5HKK8CyG6Gt3Anpum0512V8iKuHzIOtT7eBAbi4yfdP4ZikvAqHZXDScs/14WrHaLNeCz/InZkLUGxWtaM4JEcrr/9xOUXhkN5qx2g2+h/30PerWQQEyI+539LoFPomhKkdQ4hGk69q4dDuHhiKh4uMrjS3xZ2TmXBuoRTXJnCE1QZ+a2G/TBSjocHHX6is5Klz5xh44jh9jh/j1rRUfii78koU+0pKmJiWSu/jxxh16iSr8i9e9v5viotJOHWSASeO80zmOSpsv/4aUGixkHDqJOcqGzb3WpN3nq6fPEKU/6UGf0ztQbf4QFy9Gv73LIS9kfIqHJrZWScrDzSzJRH7uOXsaygON3YomuqYUw6pY2MadGyBxcKU9NPoFIX3gkP4vFMnnvLxxfUKu3ZlVFTwQMYZ+rq4sDo0jPu8vJl34QJbC6vLpdVm46nMc0zy8GRFx1AOl5XxWX5+zfmvZ2czycOTQKeG/8KqWKoIWvUMfQ0H0TnJjzyNTqHvmFC1YwjRJPKVLBze9EGdZMvYZvJ+xLeMzXhT7RhtgqNW/5cjfkTx7XDV4/5fXi7+Tk7MCwggxmgkyEnPQJOJjvr651F+XJBPgJMTz/j60dnZmYkeHtzm7sGyvDwALlos5Fks3OnhQRdnZ4aZzZysqF6aLbmkhB/Kyrjb07NRH5f7lqXEXUjC5Na+v1d0l1FX0QZIeRUOz93oxN0DZSShqZZ3+ZqRGW+pHaPNcNTyWqAp4+vEq389bS8qoqfBwGNnz3L9zye4LS2VT/9nlLQuKaWlxLuYLnvb9SYTP5SVUWmz4aXV4qPVsbukmDKrlQMlpUQ6O1Nhs/HihQu84O+HtgnTMZwPfUW/b1/Gz7997shVPddVvlcKxyflVbQJ994QjtGpff5Aag4ruuxk6JklasdoUxy1vAK85XsQW9fOVzwmo7KSVfn5hOr1LA0OYZKHB/OyLvDvgoJ6z8mpqsJbd/nXqbdOSxWQb7GgKApvBAbybm4u49JS6WZw5jZ3D/6Rm8t1JhecFQ1TTp9m7KlTrLh4se4nuQptVjrd1jxKl4DiRp3vyLrHB2L2lFFX4fikvIo2wcuk567rOqodwyF93GU7g868p3aMNseRy6tNgRUjr7yMktVmo7uzgcd9fOhuMDDJw5OJ7h61bsD6LYXLR05tv/lE9XVx4ZPQML4I78xf/fw5W1nJ+ksFPNLBh6czz3GHhwcfdezIO7k5HLvKzWH10VSUE5L0FLHmo2i0jndjXWNodRoZdRVthpRX0Wb8aWgErob2PZ/tWq2J3ErcmX+oHaNNcuTyCrDefIKS63vV+34fnY7OzpcX3M56PZlV9W9m0UGnI+c378+zWNABHtrar5zYbDZeOJ/JU76+2Gw2jpaXM8rVFW+djn5GF/aVllzbB/Ubnhv+znUX1+Li2va/b3QbFCCjrqLNkPIq2gxPk54Hh175pU7xq88jN9EnfbnaMYQdez0uG6WeG7D6GF1Irai47G1plRUE6upfCaC30cg3JZe/XL+7uJgeBgNOdcxlXV1QgIdWy3CzK79sk1H1f0O1VdiwNsNvCIbkL+i//xV8/NrutCOtTiMrDIg2RcqraFP+MKgTAe4yunA1m7p8TnT6v9SO0abZ2sCr0Yf1WZxJ6F3n+6Z6enKotJT3cnM4XVHBhksFfJqfz52eHjXHvJGdxdOZ52r+PMndg8zKShZkXeBkeTmrC/JZXZDPdC+vWtfPrari3dwcnvX1A8BdqyVcr+fDixdJKS3l2+ISehuNzfJxajNT6bn2MToHNm4agr3rLqOuoo2R8iraFIOTlsdHOv4e7S1FUWxs7bKW7meS1I7S5jn6tIFfvNz1JxTv2uUy2mjkraBgNl0q5Ja0VN7NzeVpXz/GubnXHJNTVUXm/2woEKzX825wCN+VlHDb6TTezc3lWT8/Rrm61br+/KwLTPfyxu9/1nSd5x/A5sJLPJhxhj94eRHTTOUVQKkoI3Tlk/R2P9mm5sFqnTT0GROmdgwhmpVis/12urwQjs1qtZGweBfHLhSqHcWuaBUrX0SsIfzMGrWjtAtvxt7EP/MPqx2jWfz5XG/6f7Bf7RitpnTATXzvczNlxfXP33UU/caGEXezbKMt2hYZeRVtjkaj8JeEKLVj2BWtYmV750+kuLaitjQq8EbgQYgIUztGqzF+t5EBh97A28exb+QyezrTR+a6ijZIyqtok4Z39eO68NovdbZHThobOzonEZqxXu0owkFZsPHpaNPVD2xDdGeOEb3hScICHXf09brxnXHSt90b0UT7JeVVtFmzEnug1bSduWuN4ayxsrPTR4RkbFQ7Srtjo2392/vU7Rhl10WrHaNVaUqLCF/5KDGe6SgO9tPSP9ydqDh/tWMI0SIc7MtRiIbrHujG3de135fMjFoLO8M+IPDsFrWjtEttadrALxYPygedY7+U3hgd1i4grnwbzi4OMoqpwA2TuqidQogWI+VVtGlPjIrEx9VZ7RitzqS18lXoMvzPfaF2lHarLZbXA/pMLoyJVTuGKlx2r2XA0b/j2aH+dWztRbeBAfiG1l7BQYi2QsqraNPcDE48O7ar2jFalauuiq86vo/Pue1qR2nX2mJ5BXi5+wkUD/erH9gGOaUeodeWP9Mx0Kp2lHo5m3QMvE02axFtm5RX0ebdGhtMXKf2cfOWu1MVXwW/h3fmTrWjAPDV6SrGJZUQ+HohypxLrPvp1zU/Ky02/vJFGdHvFGGad4nA1wuZuraUc4VXLwb5ZTYe2lhKwOuFGOZeotvbRWw68eu1VxyqJOTNQrwWXOLPWy9feD4t30rk34q4VN6y9bKtltfz2iJSEtvvWsqaogIiVj5Czw7nqWNTMNUNHN8Zo7nuXdGEaCukvIp24aXxPdG18Zu3vPWVfBW4BM/zu9WOUqO4wkYvPw1/H1t7d5+SSkg+b+Gvg51Jvs/EmklGjudauTnpyvvVV1hsjPyomLQCG5/dbuTYw2beH2cgyLX621lOiZV7Py/ltZEG/nOXiQ8OVrLx+K/F9sGNpbwywhk355b+99BW6yu8GnwIJSxE7Riq8v3sJQZYd6E32M88WL9ObnS/PlDtGHVSFIV169Y16NjZs2fTu3fvFs0jHJuUV9EuRPq5Mn1QmNoxWoyvcyU7/P+G+4Vv1Y5ymYQuTswdbuC2brXnCbobFL6428QdPZyI6qDlumAdf0swcCDTSnpB/aOv//y+krxSG+smGRnUUUeoh4brO+ro5V9dIk5dtOHurDCppxP9g7QM66Tlx+zq6608XIleq9SZp9nZ47BcM6lQLPw7wVPtGKoz7VzFgJNLcfdSfx6solEY8rsolGb8dzd79mwURbns4e9/5RUM6iuemZmZJCQkNFu2K1m+fDkeHh6t8lxCHVJeRbvx2IhIgjyabztJe+HvXMF238W4Zjn+DkgF5dULTHkY6v8BvP5YFQODdTy0qQy/1wrpuaSIebvKsVirRzq7eGkoqbTxfaaFvFIb+85aiPHTkldqY9Z/y/h7Quvs8d7W9y78l8ePVPTvoXYM1elPJBO77RmCVR7wjB4ShE+Ia7Nft0ePHmRmZtY8Dh9u3K5x/v7+ODu3v5tnRcuQ8iraDZOzjoUTY9rUgFiQoZztPm9izk5WO0qTlVXZeHpbGb+LdrriS/qnLlr57MdKLFbY9DsXnh/szOt7Knh5VwUAnkaFD8YbmbqulAHvFzG1lxOjI3TM3FrGIwP0pOZbiX2viJ5Livjsx8p6n6epbG3o31l9llxfAlr7edlcLZpLuXRJepjuvjmosbyvWwcDcbe0zBawOp0Of3//moePj0+9xy5fvpw5c+Zw8ODBmpHa5cuXA7WnDWRkZDB58mS8vLwwmUz069ePvXv31nnd1NRUIiIiePDBB7FarVRUVPDUU08RFBSEyWQiLi6OHTt2ALBjxw6mT59OQUFBTYbZs2cDsGTJErp06YLBYMDPz4+JEyc2x6dIqKD9Ldgn2rVBER2YEteRf32brnaUJutoLOM/Xm9gzDmidpQmq7TYmPxZKVYbLLnpyiOjVhv4mhSWjjOg1Sj0DdRyrtDKq99UMGtI9cjOrd2cuPV/pgbsSKvicJaFv481EPFWEUkTjPibFQb8o5jBoVp8Tc3/e3xbH3kF+MZwhrtGxtJhi+OP+jeVYrPh/8kLmG6cSopuIJXlrbMigaJRGDG9B3pDy/w4P3HiBIGBgTg7OxMXF8e8efMID6+7KE+aNIkjR46wZcsWtm3bBoC7e+2VKYqKihgyZAhBQUGsX78ef39/kpOTsVprf86OHDnCqFGjmDZtGvPnzwdg+vTppKWlsWrVKgIDA1m7di1jxozh8OHDxMfHs2jRImbNmsWxY8cAMJvN7N+/nxkzZvDRRx8RHx9PXl4eu3btaq5Pk2hlUl5Fu/NMQjd2Hs/mTF6p2lEarbNLKRs9XsOQe1TtKE1WabFxx2elpOZb2T7V5ao3UgW4KjhplMt2T+vWQcP5IhsVFht67eXnl1fZ+NPGMv51m5Gf86xUWWFIWPW3vkhvDXszLIyLaoHyeo0jcDaLjax1WeTvyaeqoAqdhw7P6z3xGeeDUs/NhsXHi7nwyQXKM8uxVlhx8nbCa5gXHUZ3qDmm6EgR5z46R9WlKtz6uBE4PRCNrvrjtZRYODnnJGFPhaH3btwd6vOiU3lztxlbYVGjzm9rXL/8kLhuxzjU9R4uXWy5kf1fxI7qSEDnllm6LC4ujg8//JDIyEguXLjA3LlziY+P54cffsDb27vW8UajEbPZXDNaW5+VK1eSnZ3Nvn378PKqXgkmIiKi1nF79uwhMTGRZ555hpkzZwJw8uRJkpKSyMjIIDCweq7GzJkz2bJlC8uWLWPevHm4u7vXmp+bnp6OyWQiMTERV1dXQkNDiY1tn2sWtwUybUC0OyZnHQsn9HLY6QORplI2uS/EkNd2iuuJXCvb7nbB2+Xq35IGhWj5Oc+K9X+GNo/nWgkwK7WKK8BLX5WTEKGjT4AWixWqrL+eV2kBSwuNkNqucbWB7I3Z5P03j8C7Aukyrwv+d/iTszmH3G259Z6jcdbgNcKLTs92osu8Lvje7MuF1RfI25FXncFq48x7Z/Aa5kX48+GUnirl4o6LNeef/+Q8XsO8Gl1cATJ0Bfx4U/dGn98W6Y/uJXbnXwkMaNlvMh1CzAwY16nFrp+QkMCECROIjo5mxIgRbNxYvc30Bx980KTrpqSkEBsbW1Nc65Kens6IESN4/vnna4orQHJyMjabjcjISMxmc81j586dnDx5st7rjRw5ktDQUMLDw7n77rtZsWIFJSVXXtlE2C8pr6JdGtjZ2yG3ju1mLmGD63ycLx5TO0qDFFXYSDlvIeW8BYDUi1ZSzltIL7BSZbUx8dNS9p+zsOI2IxYbnC+ycr7ISsX/NMqpa0t5Ztuva7U+2E9PbqmNRzeXcTzXwsbjlcz7uoKH+tcuYD9kWfj4hypeHFY9naBrBw0aReH/JVew8XglP+VY6R9oH3M2S0+W4hrrimtvV/Q+etz7u2PuYaY0tf5XCIyhRjyu88AQZEDvo8cj3gPXaFeKjxUDYCmyYCm04DXcC0OQAddYV8rPlQNQfKKY0rRSvEfVHkG7VvPDDqGE2OcSTWrR5l0g6pMZdPXLb5nrO2kYMb07Wm3r/Rg3mUxER0dz4sSJJl3HaLz6jbM+Pj4MGDCAVatWcenSpZq3W61WtFotBw4cICUlpeZx9OhRFi9eXO/1XF1dSU5OJikpiYCAAGbNmkWvXr3Iz89v0sci1CHlVbRbTyd0paOXi9oxGizGrYj1pnno839WO0qD7T9nIfa9YmLfqy5TT2wtJ/a9Ymb9t5yMSzbWH6si45KN3u8VE/B6Uc3jmzOWmmukF1jJLPq1zIa4a9h6lwv7zlmJeaeYGVvKeDROz9PXX15ebTYb920o483Rzpj01SNgRieF5eMNvPhVOfesL+PvYw0EubXMt8FrHdB16eJC8Y/FlJ+vLpel6aUUnyjGtVfD7yAvPV1KyYkSTF1NAGhdteg8dBT9UIS1wkrx8WIMIQasVVbOfXCOoGlB9U5JuBZlShVbxvo2+TptjWKpIvDj5+jn/D06p+b9d3bdLeF4B5qb9ZpXU15eztGjRwkICKj3GL1ej8Viqff9ADExMaSkpJCXl1fvMUajkQ0bNmAwGBg9ejSFhYUAxMbGYrFYyMrKIiIi4rLHL9ME6sug0+kYMWIECxcu5NChQ6SlpbF9u+xE6IgUm6093FYgRN32peUxeem3Ncss2as+7oV87DwPp0un1Y4iGujFPjfx6cWGLytks9m48NkFcjblVA8rWMFvgh8+ifXf3f2Lnx7/CUuhBZvFhu94X3xv+bVIFh8v5nzSeaoKq3CNcSXgdwFkb8zGUmzBc4gn55ado6qoCu8R3niPaNoo7MrNXdClOP50lpZQFnMDhzrdRVFBVZOvFRTlyS2P9W7WNV3rMnPmTMaNG0fHjh3Jyspi7ty57Ny5k8OHDxMaWvcrVytXruS+++7j66+/Jjg4GFdXV5ydnVEUhbVr1zJ+/HgqKiqIjo7Gz8+P+fPnExAQwPfff09gYCADBw5k9uzZrFu3jpSUFIqKikhISMBms7FlyxbMZjN33XUXu3fv5vXXXyc2NpacnBy2b99OdHQ0Y8eO5ZtvvmHQoEFs27aNXr164eLiwvbt2zl16hSDBw/G09OTTZs28fDDD3Po0CF69JAl3xyNjLyKdq1/mBeP3thF7RhXNMDjEp/oX5Li6mCu9dehgr0F5O/JJ/j+YCJmRxB0bxA5m3O4+PXFq54b/mw4nV/oTOC0QHK35pL/bX7N+0yRJjq/0Jmo16IInBpIRU4F+d/k43ubLxlLM/Ac5kn4s+Fk/TuLsjNl9T9JAywdWgEa+bFSF8OhXfTd/SL+/k2bpuLsouPGad1avLhC9XJWd955J1FRUdx2223o9Xq+/fbbeosrwIQJExgzZgzDhg3Dx8eHpKSkWsfo9Xq2bt2Kr68vY8eOJTo6mldeeQVtHcuumc1mNm/ejM1mY+zYsRQXF7Ns2TKmTp3Kk08+SVRUFDfffDN79+4lJKR617f4+HgeeOABJk2ahI+PDwsXLsTDw4M1a9YwfPhwunXrxrvvvktSUpIUVwclI6+i3bNabdz1//byzcn6b4xRyyDPAj7QzUVXeFbtKOIaze5zE6uvYeT1pyd+wmesz2Wjn1nrs8j/Jp/IVyIbfJ0rnWOz2Uh9JZUOYzpg6mri6INH6f5edzTOGtL/no4pyoT3yKaNvi7d3wuPLw406RptmVWn59zElzh+vnEv+Y+Y3p2ouCvvciVEWye/Iot2T6NRWDSpNx3Mjb/juiUM8b7Ih5o5UlzbCVu5rdZ3ZEWjXPsQrg1slXWfdPGri+jMOtxi3eD/ltS0/d/NcTaLDVszTJ95pXc6iovjzCVvbZqqCoJX/YU+Lj+g1V3b6GlEX18prkIg5VUIAHzdDLx+R2+7WT7rRu88/skctMXn1Y4iGulaa6Brb1eyP8+mMKWQiuwKLh24RM5/cnDr61ZzzPlPz5OxNKPmz7nbcrn0/SXKz5dTfr6ci7sukrMlB494j1rXr7pURfb6bALuqr7ZRmvS4hzoTO7WXEp+LqH4aDEuXZpeOk/pLnIisWeTr9PWeWxaQlzuakxuDVtu3eSuZ8jvolo4lRCOQTYpEOL/DIn04b7B4by385SqOcb45LKkag6a0hxVc4imudbyGnBXAFlrsmo2FNB56PAa6oXPLb/esFWVX0VFbsVlT3LhswtUZFegaBX0vnr8bvfDa2jt9TMzV2TSIaEDTp6/7jwWdG8QZ98/S+4XuXRI6IBLePOMmM4LP8KyAD9smRea5XptleH7L+l7/iQ/DX6arAv136Gv0SqMvi8ag8mp3mOEaE9kzqsQ/6PKYuX29/bwfXq+Ks8/zjebxZVz0JTWv4SMcAx/7XMT665hzmtb86fsGIb+I1ntGA7BpjdwZuJcfj5X9/qnN0yKJGZYcCunEsJ+ybQBIf6HTqvh77/rg7ep9ee/3uaXxeKKF6S4thHtfVRgic8hrD3seyUPe6FUlNFx5Ux6u55A85td4qLi/KW4CvEbUl6F+I0gDyNLpvTBqY6tRlvKpIDzvF42C01Zfqs9p2hZ7b28AiwboWA3E8kdgNfni4gr3IDRXD2jr0OImaFTZJ6rEL8l5VWIOsSFezNrXOus/zcl4ByvFM9CKb909YOFcCD/cTlF4dDeasdwKMbvNtE/5TWCQvQk3B+NTm8f2xcLYU+kvApRj7uvC+XOAR1b9Dl+H5jB3OIXUCqKWvR5ROuTkddqr/bNRDEY1I7hUHSZpxgxVMGtQ91zYIVo76S8CnEFL97Sg/5hni1y7fuC03mhcDZKRXGLXF+oyyb1FYCfnHJIvSlG7RgOxe+pP2MeNEjtGELYLSmvQlyBk1bDO3f1JdC9eUeOHgpJ45n8OSiVJc16XWE/pLr+6uWIH1F8OqgdwyG433YbXtOmqR1DCLsm5VWIq+hgdua9u/thcGqeL5fHOp5iZt4clKrSZrmesE9SXn9VoCljd2Ko2jHsnrFfXwJmv6B2DCHsnpRXIRogOtidtybHotU07c7pmaE/82juiyiW8mZKJuyVlNfLLfY7iC0qXO0Ydksf0ZmQt99G0dvXNtVC2CMpr0I00Kge/rx4S+NXIHg27DgPZb+EYqm4+sFCtDE2BVaMclY7hl3S+frScelStO7uakcRwiFIeRXiGkyJC+WR4RHXfN4LnY7yx6y5KNbKFkgl7JHcsFXbevMJSq7vrXYMu6Ixmwl5fylOgYFqRxHCYUh5FeIaPTkqijv6NXzHm7nhP/D78/NQrFUtmErYG6mudXs9LkteGv+FkxPBf3sLQ5RsRCDEtZDyKkQjzLs1mmFRPlc9bkH4IaZkzkexWVohlbAnUl7rdlifRUZCL7VjqE9RCJz3MqaBA9VOIoTDkfIqRCPotBrentKHXsH1z1F7o/P33HFuAYrN2orJhL2Q8lq/uV2PoXi1zPrJjsLnicdxHzdO7RhCOCQpr0I0kotex7LpA+jia671vr9H7OfWs6+hSIURopZcTQn7xnVWO4ZqvO+/nw5//KPaMYRwWFJehWgCL5OeFffGEebtUvO29yL2kpjxhhTXdk7+9q/sjYBDEBGmdoxW5zV9Or6PP6Z2DCEcmpRXIZrI183Aij9eR5CHkX92+YbRGYvVjiTsgKw2cGVVipVPR5vUjtGqPO+6C7+/PKV2DCEcnpRXIZpBkIeRjffHMLxgndpRhJ2Q6np1n7odo/y6aLVjtAqPSZPwf/45tWMI0SZIeRWimXh4doDffw5uQWpHEXZAymvDLI4vAJ1O7Rgtyv222/CXbV+FaDZSXoVoTl7hMO1zcJUFx9s7m7TXBtnvfI4Lo2PVjtFi3G4eR8Dcl1CUpm0tLYT4lZRXIZqbd2f4/QZwa/hGBqINUqS9NtTLPU6guLupHaPZud96K4Hz56No5EetEM1JvqKEaAneneGe/0CHSLWTCJXIyGvDndcWcXBc29plymvaVALmvYyi1aodRYg2R8qrEC3FPRimb4HAtvuSqKifdNdrszD4EEpY23i1osMjD+P3zDMyVUCIFiLlVYiWZPKungPbabDaSUQrk/J6bSoUC+vHOPiuW4qC33PP4fPQQ2onEaJNk/IqREtzdoUpn0HXRLWTiFYk67xeu488j1LZr4faMRpHpyPwlfl43X2X2kmEaPOkvArRGnTOcMeHECs/2NoLqa6N8/YNJeBg80QVvZ7gxYtwv+UWtaMI0S5IeRWitWi0cMvbED9D7SRC2K1vDGfIHek488S1Hh50/Of/w/XGG9WOIkS7IeVViNY26iVIXAQaJ7WTiBYk0wYa7+XoVBRXs9oxrsoptCNhq5Jw6ddP7ShCtCtSXoVQQ7/pcPcaMDr4DSqiXlJdGy9DV8CPid3VjnFFxj59CFu1Cn1YmNpRhGh3pLwKoZZOg+HeL8G7i9pJRAuQ8to080MPoQTb50517rfcTMfly9B5yi+fQqhByqsQavLuDPdug/ChaicRzUymDTRNmVLFf8b6qh3jcoqCz+OPE7hgARq9Xu00QrRbUl6FUJvRA6ashn73qJ1ENCfprk32D+8jVPXupnYMADQuLgS9tZgO99+ndhQh2j0pr0LYA60OEt+Asa/JjVxthHTX5vH+0ErQqPujSh/RmbDPPsVt5EhVcwghqkl5FcKeDPgjTN8M7iFqJxFNJNMGmsd/jWnkD1dv6Sy3xEQ6ffIJzuHhqmUQQlxOyqsQ9iakP9z/FXQZrXYS0QRSXZvPK7HpKC4urfqcipMTfs8/T9Brr6Jp5ecWQlyZlFch7JGLF/zuYxgxGzQ6tdMIoapTuoucSOzZas+nCwgg9F8f4XXXlFZ7TiFEw0l5FcJeKQpc/zhM+xxcA9ROI66RjLw2r3nhR1D8W371AVN8PJ3WrMbYq1eLP1dTKIrCunXrGnTs7Nmz6d27d4vmEaI1SXkVwt6FxsMDX0P4MLWTiGsgc16bV5FSwX9vCm6x6yt6Pb5//jMh/3i/VdZvnT9/Poqi8Nhjj13xuPqKZ2ZmJgkJCS0T7jeWL1+Oh4dHqzyXEA0h5VUIR2DqAHetgZEvgdZZ7TRCqGKJ7yGsPZp/Uw/nyEjCPv0E73v+gNIKKxvs27ePpUuXEhMT0+hr+Pv74+ws3wtE+yTlVQhHodHAoBnVN3MF9FY7jbgKGXdtGctv1FRPqWkOioLX9OmEffYphqio5rnmVRQVFTFlyhTef/99PK8ywrt8+XLmzJnDwYMHURQFRVFYvnw5UHvaQEZGBpMnT8bLywuTyUS/fv3Yu3dvnddNTU0lIiKCBx98EKvVSkVFBU899RRBQUGYTCbi4uLYsWMHADt27GD69OkUFBTUZJg9ezYAS5YsoUuXLhgMBvz8/Jg4cWJTPz1CNIjcCSKEo/HtWr2t7K7X4KtXwVqldiJRB5tN6mtL2GI6ye1DeuO64/smXUcXEEDg/PmYrotrpmQN89BDD3HTTTcxYsQI5s6de8VjJ02axJEjR9iyZQvbtm0DwN3dvdZxRUVFDBkyhKCgINavX4+/vz/JyclYrdZaxx45coRRo0Yxbdo05s+fD8D06dNJS0tj1apVBAYGsnbtWsaMGcPhw4eJj49n0aJFzJo1i2PHjgFgNpvZv38/M2bM4KOPPiI+Pp68vDx27drV1E+PEA0i5VUIR6TVwdCnIXI0rH0Asn9SO5H4DamuLefVfpm89K0BW1lZo853S0zEf9Zf0bq5NXOyK1u1ahXJycns27evQccbjUbMZjM6nQ5/f/96j1u5ciXZ2dns27cPLy8vACIiImodt2fPHhITE3nmmWeYOXMmACdPniQpKYmMjAwCAwMBmDlzJlu2bGHZsmXMmzcPd3d3FEW5LEN6ejomk4nExERcXV0JDQ0lNla99XhF+yLlVQhHFhhbPY1g+0uw522w1R5pEeqQ8tpyfnLKIe2mPoSu/u6aztMFBOD/17/iOrz1b348c+YMjz76KFu3bsVgMDTrtVNSUoiNja0prnVJT0+vGe19/PHHa96enJyMzWYjMjLysuPLy8vx9vau93ojR44kNDSU8PBwxowZw5gxY7j11ltxkTVxRSuQOa9CODqdM4yaC9O3gG8PtdOIGlJfW9LciB9RfDo07GCNBs+776bzhs9VKa4ABw4cICsri759+6LT6dDpdOzcuZO33noLnU6HxWJp9LWNRuNVj/Hx8WHAgAGsWrWKS5cu1bzdarWi1Wo5cOAAKSkpNY+jR4+yePHieq/n6upKcnIySUlJBAQEMGvWLHr16kV+fn6jPw4hGkrKqxBtRce46lHYUXNBb1Y7Tbsn1bVlFWjK2J0YetXjnLt2JezjVfg/9ywak6kVktXtxhtv5PDhw5cVxH79+jFlyhRSUlLQarV1nqfX669abGNiYkhJSSEvL6/eY4xGIxs2bMBgMDB69GgKCwsBiI2NxWKxkJWVRURExGWPX6YJ1JdBp9MxYsQIFi5cyKFDh0hLS2P79u0N/ZQI0WhSXoVoS7Q6iH8EHvoOut2sdpp2TdZ5bXmL/Q5iiwqv832KwYDvzCfp9NmnGKOjWzlZba6urvTs2fOyh8lkwtvbm5496989LCwsjNTUVFJSUsjJyaG8vLzWMXfeeSf+/v6MHz+e3bt3c+rUKVavXs2ePXsuO85kMrFx40Z0Oh0JCQkUFRURGRnJlClTmDp1KmvWrCE1NZV9+/axYMECNm3aVJOhqKiIL7/8kpycHEpKStiwYQNvvfUWKSkpnD59mg8//BCr1UpUK63aINo3Ka9CtEXuQTDpI5jyGXiGqZ2mXZLq2vJsCqwYWXutU9PgGwj/fD3e996LonPsWzsmTJjAmDFjGDZsGD4+PiQlJdU6Rq/Xs3XrVnx9fRk7dizR0dG88sordY7mms1mNm/ejM1mY+zYsRQXF7Ns2TKmTp3Kk08+SVRUFDfffDN79+4lJCQEgPj4eB544AEmTZqEj48PCxcuxMPDgzVr1jB8+HC6devGu+++S1JSEj16yNQl0fIUm6znIkTbVlkGu16H3YvBUnvURrSMSTGD+bEwTe0Y7cLyXT1w+fog+k6d8Hv6L5iHDFE7khCiBUl5FaK9yEuFL1+EH9Yi44It746YwRyV8toqBtKZ+dbxeN01BcXJSe04QogWJuVViPbmbDJ8MQvSZEHxlnRHzA0cLTytdow2TafRMTlqMg/0egB359qL9wsh2ibHngwkhLh2QX3g9xvg+FbY9gJk/ah2ojZJRgVa1sjQkTze53FC3ELUjiKEaGVSXoVoryJHQcQIOLgS/jsPLp1VO1GbIuW1ZfT168tjfR6jt29vtaMIIVQi5VWI9kyjgdi7oOcE+G4pfPN3KM5SO1WbIDOymtfAgIHcF3Mf/fz7qR1FCKEymfMqhPhVZSkkfwi734JLGWqncWi3RV/PiaJ0tWM4NAWFIcFDuC/mPqJ91F+rVQhhH6S8CiFqq6qAg0nw9ZtwMVXtNA7p1uhB/Fx0Ru0YDkmjaBjRcQT3xdxHlJcsei+EuJyUVyFE/awWOLK6ep3Y7J/UTuNQpLxeO52iI6FTAvfG3Eu4e907ZwkhhJRXIcTV2Wzw0wbY8zak77n68YLx0fGcLJKpFw2h1+gZ13kc90TfQ4irrB4ghLgyuWFLCHF1igLdxlU/zqXA3nerR2QtFWons1syKnB1HV07MjFyIuMjxuNp8FQ7jhDCQcjIqxCicYqyIPkD2L9cbu6qw809B5JaLMuP/ZZO0TE0ZCi3R93OwICBKIqidiQhhIOR8iqEaBqrBY7/B/b9A05uR8Ycq43rOZA0Ka81/E3+TOgygQldJuDj4qN2HCGEA5NpA0KIptFooevY6kd+Ohz6BA59DDnH1U6mMinxGkVDfGA8d0TeweDgwWg1WrUjCSHaABl5FUK0jLMH4OCq6rmxJblqp2l1iT2v43TxObVjqKKze2dGhY3ilohbCDIHqR1HCNHGSHkVQrQsSyWc+KJ63djj/wFLudqJWsVNPeJIL8lUO0arifCIYFToKEaFjaKzR2e14wgh2jApr0KI1lOaDye2Vi+79fOXUFGkdqIWM7bHAM6UnFc7Rov6pbCODhtNuIesyyqEaB1SXoUQ6qgqh9Svqovssc1QdEHtRM0qoccAMtpgeY3wiGBU2ChGh0phFUKoQ8qrEEJ9Nlv1HNmfNsCxLZB9VO1ETTamR3/Oljh+ITfqjPT160t8YDyDggbJzldCCNVJeRVC2J/CC5C2C1J3QuouuJiqdqJr5qjlVaNoiPKMYmDgQOID44n1jUWv1asdSwghakh5FULYv/wz1VMMUr+qLrWX7H/91NHd+3GuNEvtGFf1S1nt59+P/n796evfFze9m9qxhBCiXlJehRCOJy8VziXDue+rt6s9lwIVhWqnusyo7n3JLM1WO0YtQeYgunt3p6tXV7p5daOXby8pq0IIhyLlVQg7oCgKa9euZfz48Vc9dvbs2axbt46UlJQWz+UwbDbIOfE/hfZ7OH8YKktUizSye1/Oq1hetYqWMLcwunpXl9RuXt3o6t1ViqoQwuHJDltCNNL8+fNZs2YNP/30E0ajkfj4eBYsWEBUVFS959RXPDMzM/H09GzhxNWWL1/OY489Rn5+fqs8X6tQFPCJrH70mlz9NpsNCjIg9wTk/Fy949cv/3/pLC29A5atlXbYMuqMBJmDCDIHEWgOJNw9nK5eXYnyisKoM7ZKBiGEaE1SXoVopJ07d/LQQw/Rv39/qqqqeO655xg1ahQ//vgjJpPpmq7l7+/fQinbMUUBj5DqR+fhl7+vohhyf4a8U3ApEwp/eZyHS+eq/1tZ3KSnb67XtJy1zgSYAghyDSLIFESQa3VJDTYHE2gOxMvg1TxPJIQQDkLKqxCNtGXLlsv+vGzZMnx9fTlw4ACDBw+udfzy5cuZM2cOUD1N4Jdzfv/739eaNpCRkcHMmTPZunUr5eXldOvWjbfffpu4uLha101NTWXkyJGMHDmSt99+m6qqKp5//nlWrFhBfn4+PXv2ZMGCBQwdOpQdO3Ywffr0yzK88MILzJ49myVLlvDmm29y5swZ3N3dueGGG/jss8+a7fNlV/QmCOhV/ahPWUF1iS26AGWXqjdUKC+E8ktQ/sv/F/76dqsFbJaa/0Z5hONXFYCiKCgoaBQNCgp6rR5XvWv1w8kVs96Mq94VN70bZifzr+/7v4fZyVzzdyWEEELKqxDNpqCgAAAvr7pHwiZNmsSRI0fYsmUL27ZtA8Dd3b3WcUVFRQwZMoSgoCDWr1+Pv78/ycnJWK3WWsceOXKEUaNGMW3aNObPnw/A9OnTSUtLY9WqVQQGBrJ27VrGjBnD4cOHiY+PZ9GiRcyaNYtjx44BYDab2b9/PzNmzOCjjz4iPj6evLw8du3a1SyfF4dlcK9++NQ/DeRKljRzHCGEENWkvArRDGw2G0888QTXX389PXv2rPMYo9GI2WxGp9NdcZrAypUryc7OZt++fTVFOCIiotZxe/bsITExkWeeeYaZM2cCcPLkSZKSksjIyCAwMBCAmTNnsmXLFpYtW8a8efNwd3dHUZTLMqSnp2MymUhMTMTV1ZXQ0FBiY2Mb/fkQQgghWoqUVyGawcMPP8yhQ4f4+uuvm3ytlJQUYmNj6x3BheqyOWLECObOncvjjz9e8/bk5GRsNhuRkZGXHV9eXo63t3e91xs5ciShoaGEh4czZswYxowZw6233oqLi0uTPx4hhBCiOUl5FaKJHnnkEdavX89XX31FcHBwk69nNF79DnEfHx8CAwNZtWoV99xzD25u1csfWa1WtFotBw4cQKvVXnaO2Wyu93qurq4kJyezY8cOtm7dyqxZs5g9ezb79u3Dw8OjSR+PEEII0Zw0agcQwlHZbDYefvhh1qxZw/bt2+nUqdNVz9Hr9VgsliseExMTQ0pKCnl5efUeYzQa2bBhAwaDgdGjR1NYWL1Af2xsLBaLhaysLCIiIi57/DJNoL4MOp2OESNGsHDhQg4dOkRaWhrbt2+/6sckhBBCtCYpr0I00kMPPcS//vUvVq5ciaurK+fPn+f8+fOUlpbWe05YWBipqamkpKSQk5NDeXl5rWPuvPNO/P39GT9+PLt37+bUqVOsXr2aPXv2XHacyWRi48aN6HQ6EhISKCoqIjIykilTpjB16lTWrFlDamoq+/btY8GCBWzatKkmQ1FREV9++SU5OTmUlJSwYcMG3nrrLVJSUjh9+jQffvghVqv1imvWCtEUiqKwbt26Bh07e/Zsevfu3aJ5hBCOQ8qrEI30zjvvUFBQwNChQwkICKh5fPzxx/WeM2HCBMaMGcOwYcPw8fEhKSmp1jF6vZ6tW7fi6+vL2LFjiY6O5pVXXqk1DQCqpwJs3rwZm83G2LFjKS4uZtmyZUydOpUnn3ySqKgobr75Zvbu3UtISAgA8fHxPPDAA0yaNAkfHx8WLlyIh4cHa9asYfjw4XTr1o13332XpKQkevTo0XyfMOHw3nnnHWJiYnBzc8PNzY2BAweyefPmK55TX/HMzMwkISGhhZJebvny5TL9RYg2RLaHFUII0SCff/45Wq22ZvWLDz74gFdffZXvv/++3l90mmM746Zeo03uKidEOyYjr0IIIRpk3LhxjB07lsjISCIjI3n55Zcxm818++23dR7/y8YcBw8erN6sQVFYvnw5UHvaQEZGBpMnT8bLywuTyUS/fv3Yu3dvnddNTU0lIiKCBx98EKvVSkVFBU899RRBQUGYTCbi4uLYsWMHQM3GHAUFBTUZZs+eDcCSJUvo0qULBoMBPz8/Jk6c2FyfKiFEC5LVBoQQQlwzi8XCp59+SnFxMQMHDqzzGNmYQwjREqS8CiGEaLDDhw8zcOBAysrKMJvNrF27lu7du9d5rGzMIYRoCVJehRBCNFhUVBQpKSnk5+ezevVqpk2bxs6dO+stsA0hG3MIIa6FlFchhBANptfra0ZF+/Xrx759+1i8eDHvvfdeo68pG3MIIa6F3LAlhBCi0Ww2W53rFf9CNuYQQjQ3Ka9CCCEa5Nlnn2XXrl2kpaVx+PBhnnvuOXbs2MGUKVPqPUc25hBCNDcpr0IIIRrkwoUL3H333URFRXHjjTeyd+9etmzZwsiRI+s9RzbmEEI0N9mkQAghhBBCOAwZeRVCCCGEEA5DyqsQQgghhHAYUl6FEEIIIYTDkPIqhBBCCCEchpRXIYQQQgjhMKS8CiGEEEIIhyHlVQghhBBCOAwpr0IIIYQQwmFIeRVCCCGEEA5DyqsQQgghhHAYUl6FEEIIIYTDkPIqhBBCCCEchpRXIYQQQgjhMKS8CiGEEEIIhyHlVQghhBBCOAwpr0IIIYQQwmFIeRVCCCGEEA5DyqsQQgghhHAYUl6FEEIIIYTDkPIqhBBCCCEchpRXIYQQQgjhMKS8CiGEEEIIhyHlVQghhBBCOAwpr0IIIYQQwmFIeRVCCCGEEA5DyqsQQgghhHAYUl6FEEIIIYTDkPIqhBBCCCEchpRXIYQQQgjhMKS8CiGEEEIIhyHlVQghhBBCOAwpr0IIIYQQwmFIeRVCCCGEEA5DyqsQQgghhHAYUl6FEEIIIYTDkPIqhBBCCCEchpRXIYQQQgjhMKS8CiGEEEIIhyHlVQghhBBCOIz/D7e4WFk5ntl/AAAAAElFTkSuQmCC",
+ "text/plain": [
+ "