-
Notifications
You must be signed in to change notification settings - Fork 22
/
413.arithmetic-slices.py
44 lines (40 loc) · 1.1 KB
/
413.arithmetic-slices.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Tag: Array, Dynamic Programming
# Time: O(N)
# Space: O(N)
# Ref: -
# Note: -
# An integer array is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.
#
# For example, [1,3,5,7,9], [7,7,7,7], and [3,-1,-5,-9] are arithmetic sequences.
#
# Given an integer array nums, return the number of arithmetic subarrays of nums.
# A subarray is a contiguous subsequence of the array.
#
# Example 1:
#
# Input: nums = [1,2,3,4]
# Output: 3
# Explanation: We have 3 arithmetic slices in nums: [1, 2, 3], [2, 3, 4] and [1,2,3,4] itself.
#
# Example 2:
#
# Input: nums = [1]
# Output: 0
#
#
# Constraints:
#
# 1 <= nums.length <= 5000
# -1000 <= nums[i] <= 1000
#
#
class Solution:
def numberOfArithmeticSlices(self, nums: List[int]) -> int:
n = len(nums)
if n < 3:
return 0
dp = [0 for i in range(n)]
for i in range(2, n):
if nums[i] - nums[i - 1] == nums[i - 1] - nums[i - 2]:
dp[i] = dp[i - 1] + 1
return sum(dp)