Skip to content

Latest commit

 

History

History
7 lines (4 loc) · 323 Bytes

convex .md

File metadata and controls

7 lines (4 loc) · 323 Bytes

If f is convex and x is random variable, then f(E(x)) <= E(f(x))

my opinion : For any positive epsilon, if sum(epsilon) = 1, for any positive x_n,

f(epsilon_1 * x_1 + …. epsilon_n * x_n) <= epsilon_1 * f(x_1) + … + epsilon_n * f(x_n)

If f is convex function then f satisfies jensen’s inequality