-
Notifications
You must be signed in to change notification settings - Fork 4
/
utils.py
281 lines (242 loc) · 8.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
'''
Created on Mar 1, 2020
Pytorch Implementation of LightGCN in
Xiangnan He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
@author: Jianbai Ye ([email protected])
'''
import world
import torch
from torch import nn, optim
import numpy as np
from torch import log
from dataloader import BasicDataset
from time import time
from model import LightGCN
from model import PairWiseModel
from sklearn.metrics import roc_auc_score
import random
import os
try:
from cppimport import imp_from_filepath
from os.path import join, dirname
path = join(dirname(__file__), "sources/sampling.cpp")
sampling = imp_from_filepath(path)
sampling.seed(world.seed)
sample_ext = True
except:
world.cprint("Cpp extension not loaded")
sample_ext = False
class BPRLoss:
def __init__(self,
recmodel : PairWiseModel,
config : dict):
self.model = recmodel
self.weight_decay = config['decay']
self.lr = config['lr']
self.opt = optim.Adam(recmodel.parameters(), lr=self.lr)
def stageOne(self, users, pos, neg):
loss, reg_loss = self.model.bpr_loss(users, pos, neg)
reg_loss = reg_loss*self.weight_decay
loss = loss + reg_loss
self.opt.zero_grad()
loss.backward()
self.opt.step()
return loss.cpu().item()
def UniformSample_original(dataset, neg_ratio = 1):
dataset : BasicDataset
allPos = dataset.allPos
start = time()
if sample_ext:
S = sampling.sample_negative(dataset.n_users, dataset.m_items,
dataset.trainDataSize, allPos, neg_ratio)
else:
S = UniformSample_original_python(dataset)
return S
def UniformSample_original_python(dataset):
"""
the original impliment of BPR Sampling in LightGCN
:return:
np.array
"""
total_start = time()
dataset : BasicDataset
user_num = dataset.trainDataSize
users = np.random.randint(0, dataset.n_users, user_num)
allPos = dataset.allPos
S = []
sample_time1 = 0.
sample_time2 = 0.
for i, user in enumerate(users):
start = time()
posForUser = allPos[user]
if len(posForUser) == 0:
continue
sample_time2 += time() - start
posindex = np.random.randint(0, len(posForUser))
positem = posForUser[posindex]
while True:
negitem = np.random.randint(0, dataset.m_items)
if negitem in posForUser:
continue
else:
break
S.append([user, positem, negitem])
end = time()
sample_time1 += end - start
total = time() - total_start
return np.array(S)
# ===================end samplers==========================
# =====================utils====================================
def set_seed(seed):
np.random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.manual_seed(seed)
def getFileName():
if world.model_name == 'mf':
file = f"mf-{world.dataset}-{world.config['latent_dim_rec']}.pth.tar"
elif world.model_name == 'lgn':
file = f"lgn-{world.dataset}-{world.config['lightGCN_n_layers']}-{world.config['latent_dim_rec']}.pth.tar"
return os.path.join(world.FILE_PATH,file)
def minibatch(*tensors, **kwargs):
batch_size = kwargs.get('batch_size', world.config['bpr_batch_size'])
if len(tensors) == 1:
tensor = tensors[0]
for i in range(0, len(tensor), batch_size):
yield tensor[i:i + batch_size]
else:
for i in range(0, len(tensors[0]), batch_size):
yield tuple(x[i:i + batch_size] for x in tensors)
def shuffle(*arrays, **kwargs):
require_indices = kwargs.get('indices', False)
if len(set(len(x) for x in arrays)) != 1:
raise ValueError('All inputs to shuffle must have '
'the same length.')
shuffle_indices = np.arange(len(arrays[0]))
np.random.shuffle(shuffle_indices)
if len(arrays) == 1:
result = arrays[0][shuffle_indices]
else:
result = tuple(x[shuffle_indices] for x in arrays)
if require_indices:
return result, shuffle_indices
else:
return result
class timer:
"""
Time context manager for code block
with timer():
do something
timer.get()
"""
from time import time
TAPE = [-1] # global time record
NAMED_TAPE = {}
@staticmethod
def get():
if len(timer.TAPE) > 1:
return timer.TAPE.pop()
else:
return -1
@staticmethod
def dict(select_keys=None):
hint = "|"
if select_keys is None:
for key, value in timer.NAMED_TAPE.items():
hint = hint + f"{key}:{value:.2f}|"
else:
for key in select_keys:
value = timer.NAMED_TAPE[key]
hint = hint + f"{key}:{value:.2f}|"
return hint
@staticmethod
def zero(select_keys=None):
if select_keys is None:
for key, value in timer.NAMED_TAPE.items():
timer.NAMED_TAPE[key] = 0
else:
for key in select_keys:
timer.NAMED_TAPE[key] = 0
def __init__(self, tape=None, **kwargs):
if kwargs.get('name'):
timer.NAMED_TAPE[kwargs['name']] = timer.NAMED_TAPE[
kwargs['name']] if timer.NAMED_TAPE.get(kwargs['name']) else 0.
self.named = kwargs['name']
if kwargs.get("group"):
#TODO: add group function
pass
else:
self.named = False
self.tape = tape or timer.TAPE
def __enter__(self):
self.start = timer.time()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if self.named:
timer.NAMED_TAPE[self.named] += timer.time() - self.start
else:
self.tape.append(timer.time() - self.start)
# ====================Metrics==============================
# =========================================================
def RecallPrecision_ATk(test_data, r, k):
"""
test_data should be a list? cause users may have different amount of pos items. shape (test_batch, k)
pred_data : shape (test_batch, k) NOTE: pred_data should be pre-sorted
k : top-k
"""
right_pred = r[:, :k].sum(1)
precis_n = k
recall_n = np.array([len(test_data[i]) for i in range(len(test_data))])
recall = np.sum(right_pred/recall_n)
precis = np.sum(right_pred)/precis_n
return {'recall': recall, 'precision': precis}
def MRRatK_r(r, k):
"""
Mean Reciprocal Rank
"""
pred_data = r[:, :k]
scores = np.log2(1./np.arange(1, k+1))
pred_data = pred_data/scores
pred_data = pred_data.sum(1)
return np.sum(pred_data)
def NDCGatK_r(test_data,r,k):
"""
Normalized Discounted Cumulative Gain
rel_i = 1 or 0, so 2^{rel_i} - 1 = 1 or 0
"""
assert len(r) == len(test_data)
pred_data = r[:, :k]
test_matrix = np.zeros((len(pred_data), k))
for i, items in enumerate(test_data):
length = k if k <= len(items) else len(items)
test_matrix[i, :length] = 1
max_r = test_matrix
idcg = np.sum(max_r * 1./np.log2(np.arange(2, k + 2)), axis=1)
dcg = pred_data*(1./np.log2(np.arange(2, k + 2)))
dcg = np.sum(dcg, axis=1)
idcg[idcg == 0.] = 1.
ndcg = dcg/idcg
ndcg[np.isnan(ndcg)] = 0.
return np.sum(ndcg)
def AUC(all_item_scores, dataset, test_data):
"""
design for a single user
"""
dataset : BasicDataset
r_all = np.zeros((dataset.m_items, ))
r_all[test_data] = 1
r = r_all[all_item_scores >= 0]
test_item_scores = all_item_scores[all_item_scores >= 0]
return roc_auc_score(r, test_item_scores)
def getLabel(test_data, pred_data):
r = []
for i in range(len(test_data)):
groundTrue = test_data[i]
predictTopK = pred_data[i]
pred = list(map(lambda x: x in groundTrue, predictTopK))
pred = np.array(pred).astype("float")
r.append(pred)
return np.array(r).astype('float')
# ====================end Metrics=============================
# =========================================================